Product Description
China Cheap Heavy Duty Silent Industrial Direct Driven Cooling 220V Portable Diesel Oil Free Rotary Type Mini Screw Air Compressor
| Model number | AS-10PMC |
| Driven method | Direct driven |
| Capacity | 0.33-1.04m3/min @8bar |
| Motor | IP23 IP54 |
| Type | Permanent Magnet Inverter Type Compressor |
| Applicant for | Mould industry, plastic injection machine, printing industry, 4S shop etc |
Detailed Photos
Technical data for permanent magnet inverter type (PMC Series) compressor
Company Profile
HangZhou Xihu (West Lake) Dis. Mechanical Equipment Co., Ltd. is located in B district of lianhua industrial park, HangZhou city, ZheJiang province. The company was founded in May 2018, covers an area of more than 150 acres, and has a factory building of more than 6,000 square meters. The company has more than 300 fixed employees, more than 50 skilled workers, and more than 40 sets of large-scale production equipment.
The company has a complete equipment production system. In order to strengthen the integration of the industry, the company passed the ISO9001:2008 international quality management system verification at the end of 2018. After the company’s unity, positive and facing fierce market competition, the company is relying on its own advantages to integrate external resources, optimize pioneering and innovation, and move CHINAMFG in the direction of diversified business and diversified operations. The company is mainly engaged in the production of screw air compressors and spare parts. The main products are fix speed screw air compressor,variable frequency speed screw air compressor, permanent magnet variable frequency speed screw air compressor and two-stage screw air compressor. At the end of 2018, the company joined forces with famous school designers to develop integrated screw compressors. The pressure range is 0.4mpa-1.6mpa and the power is 4kw-315kw. It can be customized to meet the requirements of different climate buyers in different countries.Although it was only established for 1 year, with the advantage of high cost performance, energy saving and environmental protection, our customers have reached more than 2,000 in the world. The company has always been committed to revitalizing the national industry and building internationally renowned brands to provide users with time. The most perfect gas supply is the mission. With the aim of flow management, first-class technology, first-class products and first-class service, the brand of ZhiQi will be carried forward.
Certifications
Successful Project
Packaging & Shipping
FAQ
Q1. How about the package for this compressor?
A: Generally, we pack our goods in neutral wooden case. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.
Q2. What is your terms of 10hp~75hp screw air compressor payment?
A: 100%T/T in advance, L/C, Paypal before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of 7.5kw~55kw air compressor screw type delivery?
A: EXW, FOB, CFR, CIF, DDU are available.
Q4. How about your delivery time for this compresores?
A: Generally, it will take 5-7 working days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q5. Can you produce the 7.5kw~55kw air compressor screw type according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6. What is your sample policy?
A: We can supply the 10hp~75hp screw air compressor sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q7. Do you test all your 7.5kw~55kw air compressor screw type before delivery?
A: Yes, we have 100% test before delivery, don’t worry about the compressor quality.
Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
.webp)
What Is the Role of Filtration in Water-Lubricated Air Compressors?
Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:
Contaminant Removal:
- Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
- Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.
Protection of Components:
- Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
- Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.
Prevention of System Fouling:
- Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.
Extended Equipment Lifespan:
- Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.
Regular Maintenance and Monitoring:
- Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
- Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.
In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.
.webp)
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.


editor by lmc 2024-11-19
China Professional Industrial China Manufacturer 4kw-355kw Rotary Oil Free Portable Diesel Premanent Magnetic Variable Speed Inverter Direct Drive Electric Screw Air Compressor air compressor CHINAMFG freight
Product Description
Product Description
ZAKF 7.5kw 10hp Industrial Fixed Speed Screw Air Compressor
|
Product Name |
power frequency 10hp air compressor |
|
Model |
ZA-10 |
|
Working Pressure |
7/8/10/12 bar |
|
Coling Method |
air cooling\water cooling |
|
Voltage |
380v50hz or custom |
|
Noise |
66+-2 |
|
Dimension |
890*650*830MM |
|
Weight |
190KG |
|
Outlet Size |
G1/2 |
Company Profile
Certification and Exhibitions
After Sales Service
Pre-Sales Service
* Inquiry and consulting support.
* Sample testing support.
* View our Factory.
* Supply of accessorise
* Information supply
After-Sales Service
* Training how to instal the machine, training how to use the machine.
* Engineers available to service machinery overseas.
* Machine maintenance
* Proposal of improvement
Packaging & Shipping
Customer Evaluation
FAQ
Q:Are you a factory or trade company?
A:We are a factory,we provide screw Air compressors,Air receivers,UltraFilters,Dryers,Electronic condensate drains and Oil/Water
separators.
Q:How to pay?
A:T/T and L/C,Western Union,Paypal.
Q:How about your monthly production?
A:8000sets/month.
Q: what’s the advantages of your company?
A:1. I have factory,the quality can be control. 2. the price is good 3. I have professional team 4. we can be your oem factory 5.
Excellent after service. 6. we have inverter compressor, it can save energy.
Q:How to package&delivery?
A:we will use standard wooden case to package and shipped after finishing payment.
Q:How many services you will provide about air compressor?
A:we will provie perfect before-sales and after-sales for each machine.
Contact Us
CONTACT US
Sales Manager:Grace
HangZhou City CHINAMFG Compressor Parts
Co.,LTD HONGKONG CHINAMFG INDUSTRY LIMITED
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.
<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China Professional Industrial China Manufacturer 4kw-355kw Rotary Oil Free Portable Diesel Premanent Magnetic Variable Speed Inverter Direct Drive Electric Screw Air Compressor air compressor CHINAMFG freight”><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China Professional Industrial China Manufacturer 4kw-355kw Rotary Oil Free Portable Diesel Premanent Magnetic Variable Speed Inverter Direct Drive Electric Screw Air Compressor air compressor CHINAMFG freight”>
editor by lmc 2024-11-04
China Best Sales Stationary Cheap Low Noise Smart Oil Less Cooling Screw Air Compressor with Low Price small air compressor
Product Description
Product Details
Product Features
PM VSD screw air compressor, is a type of screw air compressor that employs permanent magnet synchronous motor (PMSM) and frequency conversion speed control technology.
The main advantages of this screw air compressors are:
Energy saving and high efficiency: Compared with traditional asynchronous motors, permanent magnet inverter motors have higher energy utilization efficiency, and can maintain high power utilization and output power stability under both full load and partial load conditions.
Stable operation: the frequency converter can control a smoother start of the compressor, reduce the impact on the supporting power grid and the mechanical wear and tear of the machine itself, to extend the service life of the equipment.
Low noise: inverter operation can effectively reduce the noise level of the compressor at low load.
Intelligent: Equipped with an intelligent control system, the permanent magnet inverter motor can accurately control the compressor’s working status, distribute the load and achieve more efficient energy use.
Lower maintenance costs: when start-up, frequency conversion air compressor reduces the impact on the power grid and mechanical parts of the equipment, the service life is greatly increased of the compressor’s parts (the motor contactor, motor bearings, host bearings). Energy efficient controller makes the air compressor be in the loading state when at most working time, the relevant solenoid valves and pneumatic components have greatly reduced the number of actions, the failure rate of electrical and mechanical parts is greatly reduced.
Model List
Technical Parameters Of PM VSD Screw Air Compressor -JXPMX Series
This series adopt direct drive mode and variable frequency startup, the standard power supply is 380V/50Hz, and 110V~480V voltage and 60Hz is Optional
| Model | Pressure (MPa) |
Pressure (psi) |
FAD (m3/min) |
FAD (CFM) |
Power (kW/hp) |
Dimension (mm) |
Noise (dB) |
Weight (Kg) |
Pipe Diameter |
| JX-6APMX | 0.8 | 116 | 0.68 | 24 | 4.5/ 6 | 800*500*750 | ≤58±2 | 103 | G3/4 |
| JX-10APMX | 0.8 | 116 | 1.1 | 38.8 | 7.5/ 10 | 800*600*860 | ≤60±2 | 120 | G1/2 |
| 1 | 145 | 0.9 | 31.8 | ||||||
| 1.3 | 188 | 0.7 | 24.7 | ||||||
| JX-15APMX | 0.8 | 116 | 1.7 | 60 | 11/ 15 | 1050*750*1040 | ≤62±2 | 180 | G3/4 |
| 1 | 145 | 1.6 | 56.5 | ||||||
| 1.3 | 188 | 1 | 35.3 | ||||||
| JX-20APMX | 0.8 | 116 | 2.4 | 84.7 | 15/ 20 | 1050*750*1040 | ≤65±2 | 207 | G3/4 |
| 1 | 145 | 2.2 | 77.7 | ||||||
| 1.3 | 188 | 1.8 | 63.6 | ||||||
| JX-30APMX | 0.8 | 116 | 3.5 | 123.6 | 22/ 30 | 1160*800*1180 | ≤65±2 | 280 | G1 |
| 1 | 145 | 3 | 105.9 | ||||||
| 1.3 | 188 | 2.5 | 88.3 | ||||||
| JX-40APMX | 0.8 | 116 | 5.2 | 183.6 | 30/ 40 | 1250*950*1270 | ≤65±2 | 360 | G1 |
| 1 | 145 | 4.3 | 151.8 | ||||||
| 1.3 | 188 | 3.2 | 113 | ||||||
| JX-50APMX | 0.8 | 116 | 6.1 | 215.4 | 37/ 50 | 1250*950*1270 | ≤66±2 | 438 | G1 1/2 |
| 1 | 145 | 5.3 | 187.1 | ||||||
| 1.3 | 188 | 4.6 | 162.4 | ||||||
| JX-60APMX | 0.8 | 116 | 7.4 | 261.3 | 45/ 60 | 1250*1000*1370 | ≤68±2 | 486 | G1 1/2 |
| 1 | 145 | 6.8 | 240.1 | ||||||
| 1.3 | 188 | 5.7 | 201.3 | ||||||
| JX-75APMX | 0.8 | 116 | 9.5 | 335.4 | 55/ 75 | 1600*1140*1530 | ≤70±2 | 998 | G2 |
| 1 | 145 | 8.2 | 289.5 | ||||||
| 1.3 | 188 | 6.8 | 240.1 | ||||||
| JX-100APMX | 0.8 | 116 | 12.2 | 430.8 | 75/ 100 | 1750*1240*1600 | ≤70±2 | 1096 | G2 |
| 1 | 145 | 10.9 | 384.9 | ||||||
| 1.3 | 188 | 9.1 | 321.3 | ||||||
| JX-125APMX | 0.8 | 116 | 15.3 | 540.2 | 90/ 125 | 2350*1450*1830 | ≤82±2 | 1320 | G2 |
| 1 | 145 | 13.4 | 473.2 | ||||||
| 1.3 | 188 | 11.6 | 409.6 | ||||||
| JX-150APMX | 0.8 | 116 | 19.8 | 699.1 | 110/ 150 | 2550*1680*1900 | ≤82±2 | 2680 | DN80 |
| 1 | 145 | 16.4 | 579.1 | ||||||
| 1.3 | 188 | 14.5 | 512.0 | ||||||
| JX-175APMX | 0.8 | 116 | 23 | 812.1 | 132/ 175 | 2550*1680*1900 | ≤82±2 | 2900 | DN80 |
| 1 | 145 | 19.5 | 688.5 | ||||||
| 1.3 | 188 | 16.2 | 572.0 | ||||||
| JX-200APMX | 0.8 | 116 | 27.2 | 960.4 | 160/ 200 | 3050*1900*2000 | ≤84±2 | 4150 | DN80 |
| 1 | 145 | 22.6 | 798.0 | ||||||
| 1.3 | 188 | 21.2 | 748.6 | ||||||
| JX-250APMX | 0.8 | 116 | 30 | 1059.3 | 185/ 250 | 3050*1900*2000 | ≤84±2 | 4320 | DN80 |
| 1 | 145 | 27.2 | 960.4 | ||||||
| 1.3 | 188 | 23.3 | 822.7 | ||||||
| JX-270APMX | 0.8 | 116 | 33 | 1165.2 | 200/ 270 | 3620*2200*2250 | ≤86±2 | 5350 | DN100 |
| 1 | 145 | 29 | 1571.0 | ||||||
| 1.3 | 188 | 25.4 | 896.9 | ||||||
| JX-300APMX | 0.8 | 116 | 38 | 1341.8 | 220/ 300 | 3620*2200*2250 | ≤86±2 | 5600 | DN100 |
| 1 | 145 | 32 | 1129.9 | ||||||
| 1.3 | 188 | 28.6 | 1009.9 | ||||||
| JX-340APMX | 0.8 | 116 | 43 | 1518.3 | 250/ 340 | 3620*2200*2250 | ≤86±2 | 5960 | DN100 |
| 1 | 145 | 37.5 | 1324.1 | ||||||
| 1.3 | 188 | 31.2 | 1101.7 |
Presentation of all aspects
In our product showcase, the air compressor stands as a testament to our commitment to precision work for better quality. Every component, from the robust motor to the intricate valves, is crafted with meticulous attention to detail in our specialized workshops.
Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.
Our air compressor production begins with precision cutting and shaping of sheet metal, ensuring a CHINAMFG foundation. Components are assembled with meticulous care, from welding to the installation of noise-reducing mufflers, and coated for protection. Rigorous testing and careful packaging guarantee quality and safe delivery, reflecting our commitment to CHINAMFG in every compressor we craft.
Our factory integrates advanced machinery to craft top-quality air compressors. Laser cutting and bending machines create precise metal components, while welding builds a durable structure. Test equipment ensures performance and safety, spray booths protect and enhance aesthetics, and efficient forklift handling streamlines production, delivering reliable products to our customers.
Customer testimonials overwhelmingly reflect high satisfaction with our air compressor products and service. Clients are consistently impressed by the durability and performance of our air compressors, noting their superior quality and suitability for various industrial needs. Ease of installation, impressive power output, and the smooth operation of our machines are frequently highlighted as key attributes.
Air compressors play a key role in many scenarios. In laboratory gas supply, they ensure precise and stable air pressure; in automotive spraying and metal stamping, they provide efficient power to improve production efficiency. In wood processing and rock drilling, air compressors drive tools to realize precise operation; in plastic production lines, stable airflow helps molding to ensure product quality. These application scenarios fully demonstrate the indispensability of air compressors in modern industrial production.
At exhibitions and customer visits, we carefully demonstrate the outstanding performance and innovative technology of our air compressors, allowing visitors to experience the advantages of their use in a wide range of industrial applications. From laboratory gas supply to automotive spraying, from metal stamping to wood processing to plastics production, the power and flexibility of air compressors were demonstrated in all aspects. Through on-site demonstrations and interactive exchanges, we not only enhanced our customers’ understanding of the product performance, but also collected valuable feedback
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
.webp)
How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?
Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:
Positive Effects:
- Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
- Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
- Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.
Negative Effects:
- Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
- Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
- System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.
Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.
<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China Best Sales Stationary Cheap Low Noise Smart Oil Less Cooling Screw Air Compressor with Low Price small air compressor “><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China Best Sales Stationary Cheap Low Noise Smart Oil Less Cooling Screw Air Compressor with Low Price small air compressor “>
editor by lmc 2024-10-21
China manufacturer Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr-200va/W 200kw air compressor for sale
Product Description
Lead Time
Product Description
TR-2.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.
direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min).
12. Automatic Cleaning System
The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary.
Introduction
Company Information
Package Delivery
BACK HOME
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Single Screw Compressor |
| Samples: |
US$ 86800/set(s)
1 set(s)(Min.Order) | |
|---|
.webp)
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
Can Water-Lubricated Air Compressors Be Used in Medical Applications?
Water-lubricated air compressors can be used in certain medical applications, offering specific advantages for these environments. Here are some considerations regarding the use of water-lubricated air compressors in medical settings:
- Clean and sterile lubrication: Water is a clean and sterile lubricant, making it suitable for medical applications where maintaining a sterile environment is crucial. Water lubrication helps prevent contamination and ensures the integrity of medical products and procedures.
- Reduced risk of oil contamination: Oil-lubricated compressors pose a risk of oil carryover and oil vapor entering the compressed air system. This can be problematic in medical applications, where oil contamination could impact patient safety or interfere with sensitive medical equipment. Water-lubricated compressors eliminate this risk, providing a reliable and oil-free compressed air source.
- Compatibility with medical gases: Water-lubricated air compressors are compatible with medical gases such as oxygen or nitrous oxide. Unlike oil lubricants, water does not react or contaminate these gases, ensuring their purity and safety in medical procedures.
- Hygienic and easy to clean: Water lubrication simplifies cleaning procedures in medical environments. It does not leave behind sticky residues or require harsh chemicals for cleaning. Water-lubricated compressors can be easily cleaned and maintained, promoting a hygienic and safe medical facility.
- Reduced risk of fire hazards: Water has a higher flash point compared to oil lubricants, making water-lubricated compressors safer in terms of fire hazards. In medical settings, where fire safety is critical, using water as a lubricant can provide added peace of mind.
- Environmental friendliness: Water is a non-toxic and environmentally friendly lubricant choice. It does not contribute to air or water pollution, aligning with the sustainability goals of medical facilities.
While water-lubricated air compressors offer several advantages for medical applications, it’s important to note that specific requirements and regulations may vary depending on the type of medical procedure or equipment involved. It is advisable to consult with medical professionals or equipment manufacturers to ensure the suitability and compliance of water-lubricated air compressors for specific medical applications.


editor by CX 2024-05-17
China manufacturer Top Brand Oil Free Rotary Screw Air Compressors 75 kw small air compressor
Product Description
Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages
1.Clean air 1, China
Our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling and Water Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
.webp)
Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?
When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:
Water Quality:
- Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
- Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.
Water Temperature:
- Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
- Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.
Water Treatment:
- Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
- Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.
By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2024-05-17
China OEM 22kw 20bar Variable Frequency Oil Free Screw Air Compressor air compressor lowes
Product Description
Product Description
Permanent magnet frequency conversion saves energy and electricily, with high motor power factor, and inteligent frequencyconversion control reduces equipment power consumption.
m For the use of laser cuting auxilary gas, customize oll control accessories to ensure that the oll content at the outlet of the aicompressor is reduced to the minimum and the post-treatment pressure is reduced.
m Closed silent design, thickened steel pipe customized connector, high shock resistance to ensure stabilty without leakagem The direct connection host adopts 6 imported beanings, which have high accuracy, good stabilily, high screw rotation accuracy andmore reliable use.
Detailed Photos
Certifications
Packaging & Shipping
After Sales Service
FAQ
1. who are we?
We are based in ZheJiang , China, start from 2571,sell to South Asia(30.00%),Africa(20.00%),Mid East(20.00%),North America(15.00%),Western Europe(15.00%). There are total about 51-100 people in our office.
2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;
3.what can you buy from us?
air compressor,screw air compressor,air dryer,fine filter,laser cutting machine
4. why should you buy from us not from other suppliers?
null
5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,CPT,DEQ,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR;
Accepted Payment Type: T/T,Credit Card,PayPal,Western Union,Cash;
Language Spoken:English,Chinese,Spanish,German,Arabic,French,Russian,Korean,Italian
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours Online |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Oil-less |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
Are There Any Potential Water-Related Issues with These Compressors?
Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:
Corrosion:
- Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
- External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.
Water Quality:
- Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
- Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.
Water Treatment and Filtration:
- Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
- Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.
Water Supply and Availability:
- Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
- Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.
It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.
.webp)
How Is Water Quality Crucial for the Performance of These Compressors?
Water quality plays a crucial role in the performance of water-lubricated air compressors. The quality of the water used for lubrication directly impacts the efficiency, reliability, and lifespan of these compressors. Here are the key reasons why water quality is essential for optimal compressor performance:
- Lubrication effectiveness: Water serves as the lubricant in water-lubricated air compressors. The water forms a protective film between moving parts, reducing friction and wear. However, if the water contains impurities or contaminants, it can compromise the lubricating properties. Impurities like minerals, sediments, or dissolved solids can hinder the formation of an effective lubricating film, leading to increased friction and potential damage to the compressor components.
- Corrosion prevention: Water with high mineral content, such as hard water, can promote corrosion within the compressor system. Minerals like calcium and magnesium can react with metal surfaces, leading to rust, scale formation, and degradation of internal components. Corrosion compromises the structural integrity of the compressor, reduces its efficiency, and may result in costly repairs or even premature failure.
- Preventing blockages: Poor water quality can result in the accumulation of sediments, debris, or contaminants within the compressor system. These deposits can block water passages, filters, or valves, impeding the flow of water and affecting the overall performance of the compressor. Restricted water flow may lead to inadequate cooling, reduced lubrication, and compromised efficiency.
- Preventing fouling and fouling-related issues: Fouling refers to the accumulation of organic or inorganic deposits on heat transfer surfaces, such as heat exchangers or radiators, within the compressor system. Poor water quality can contribute to fouling, reducing heat transfer efficiency and impairing the cooling capacity of the compressor. This can result in elevated operating temperatures, decreased performance, and potential damage to the compressor.
- System cleanliness: Clean water is crucial for maintaining a clean and sanitary compressor system, especially in industries like food and beverage or medical applications. Contaminated water can introduce harmful bacteria, microorganisms, or particles into the compressor, posing a risk to product quality, safety, or patient well-being.
To ensure optimal performance and longevity of water-lubricated air compressors, it is important to monitor and maintain the quality of the water used for lubrication. Regular water analysis, proper filtration, and appropriate water treatment measures should be employed to remove impurities, control mineral content, and maintain the desired water quality. By ensuring clean and high-quality water, the compressor can operate efficiently, minimize the risk of component damage, and contribute to a reliable and safe compressed air system.


editor by CX 2024-05-16
China best China Clean Low Price Dry Oil Free Screw Air Compressor for Sand Blasting air compressor repair near me
Product Description
Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages
1.Clean air 1, China
Our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling and Water Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
How Are Water-Lubricated Air Compressors Used in Automotive Applications?
Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:
Tire Inflation:
- Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
- Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.
Painting and Finishing:
- Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
- Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.
Brake and Suspension Systems:
- Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
- Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.
Diagnostic and Testing Equipment:
- Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
- Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.
Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.
.webp)
How does a water lubrication system work in air compressors?
A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:
1. Water Injection:
In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.
2. Lubrication:
As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.
3. Cooling:
The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.
4. Separation and Filtration:
After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.
5. Water Treatment:
In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.
6. Recirculation or Discharge:
Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.
By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.


editor by CX 2024-05-14
China Custom Industrial Stationary Similar CHINAMFG Rand CHINAMFG 7 8 10 Bar 55kw Medical Oil Free Electric Direct Driven Pm VSD Rotary Screw Type Air Compressor mini air compressor
Product Description
Product Description
Product Introduction
The Airend of Kingair water lubricated Oil-free CHINAMFG adopts PEEK door rotor, aerospace grade stainless steel rotor and a new production process. Using nano-scale water filter core and Inlet reverse osmosis system, it can provide a stable and qualified lubricating water treatment system for the compressor. The oil-free machine system can change water without stopping according to the set water change cycle, reducing daily maintenance costs and making use more worry-free. The system is simple, reduces parts and failure points, and improves reliability. Low energy consumption, isothermal compression, higher volumetric efficiency, more than 15% energy saving than two-stage compression dry oil-free screw compressor.
Detailed Photos
Product Parameters
| Model | KAW-55A |
| Power(Kw) | 55Kw |
| Pressure(Bar) | 10Bar |
| Volume flow(m3/min) | 8.55m3/min |
| Air Outlet | 1 1/2” |
| Weight(kg) | 1470Kg |
| Dimension(mm) | 1980×1300×1750mm |
Certifications
Packaging & Shipping
Installation Instructions
Company Profile
ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.
FAQ
Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.
Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.
Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.
Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.
Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.
Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.
Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | on Line Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 22200/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.


editor by CX 2024-05-14
China best High Pressure Booster Air Compressor Oil Free Screw Piston Booster Compressor lowes air compressor
Product Description
Product Description
Silent screw oil-free Piston Booster compressor
Overall Beauty
According to the special design layout of the whole machine, the structure is beautiful and ergonomic design
High level of safety protection
Fully enclosed structure design, safe operation process
Easy maintenance
The cover panel is easy to disassemble,and the observation window is convenient for abserving the internal state of the running process
Low noise
The sound-absorbing cotton is laid inside the mute cover, and the full enveloping design effectively prevents the running noise from being transmitted, which is 10-15% lower than that of the open type machine
Silent cover is optional ,screw pistion booster is optional
Detailed Photos
Packaging & Shipping
FAQ
1. What makes you different with others?
1) Our Excellent Service
For a quick, no hassle quote just send email to us
We promise to reply with a price within 24 hours – sometimes even within the hour.
2).Our quick manufacturing time
For Normal orders, we will promise to produce within 15-20 working days.
We can ensure the delivery time according to the formal contract
2. Can I use our own brand logo on the products?
Yes. We provide OEM/ODM service to our customers. Our professional engineers having rich experience in heat pump design and manufacture. Just tell us your ideas or provide the drawing, we can help you to carry out your ideas.
3.What is your terms of delivery?
We accept FOB, CFR, CIF, EXW etc. You can choose the 1 which is the most convenient or cost effective for you.
4.What about warranty?
12 Months after B/L date. Any failure occurred within the period due to our responsibility, we’ll supply you the spare parts for free, also permanent technical support and consultation all life long for the machines.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Compress Level: | Double-Stage |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2024-05-14
China Best Sales 8 Bar 116 CHINAMFG Oil Free Oilless Rotary Screw Type Air Compressor Without Oil air compressor for car
Product Description
5-400 Kw Low Noise Electric Water Lubricated/Injected Oil Free Oilless Direct Coupling Rotary Screw Type Air Compressor Advantages
1.Clean air 100% oil-free
2.Use water instead of oil, higher cooling efficiency and compression efficiency
3.Optimal isothermal compression
4.Powerful MAM microcomputer controller and touch screen
5.Reasonable Structure, with perfect balancing
6.Components made of anti-rust and anti-corrosion materials ensure the durability
7.Significant energy saving, environmental-friendly and pollution-free
8.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
DENAIR Water-lubricated Oil Free Screw Air Compressor In Hannover Messe 2017
Technical Parameters Of Water-lubricated Oil-free Screw Air Compressor
| Model | Maximum working pressure |
Capacity(FAD)* | Installed motor power |
Driving Mode & Cooling Method | Noise Level** | Dimensions (mm) |
Weight | Air Outlet Pipe Diameter |
|||||||||||
| 50Hz | 60Hz | ||||||||||||||||||
| Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||||||||||||
| bar(e) | psig | m³/min | m³/min | cfm | cfm | m³/min | m³/min | cfm | cfm | kW | hp | [dB(A)] | L | W | H | kg | |||
| DVAW-15 | 7.5 | 109 | 1 | 2 | 36 | 71 | 1 | 2 | 36 | 71 | 15 | 20 | Direct Driven Air Cooling W-water Cooling |
63 | 1200 | 900 | 1200 | 650 | G1″ |
| 8.5 | 123 | 0.97 | 1.94 | 35 | 69 | 0.97 | 1.94 | 35 | 69 | 15 | 20 | 63 | 1600 | 1100 | 1500 | 650 | G1″ | ||
| 10.5 | 152 | 0.83 | 1.66 | 30 | 59 | 0.83 | 1.66 | 30 | 59 | 15 | 20 | 63 | 1200 | 900 | 1200 | 650 | G1″ | ||
| DVAW-18 | 7.5 | 109 | 1.41 | 2.81 | 50 | 99 | 1.41 | 2.81 | 50 | 99 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ | |
| 8.5 | 123 | 1.35 | 2.7 | 48 | 95 | 1.35 | 2.7 | 48 | 95 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ | ||
| 10.5 | 152 | 1.1 | 2.19 | 39 | 77 | 1.1 | 2.19 | 39 | 77 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ | ||
| DVAW-22 | 7.5 | 109 | 1.74 | 3.48 | 62 | 123 | 1.74 | 3.48 | 62 | 123 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ | |
| 8.5 | 123 | 1.73 | 3.46 | 61 | 122 | 1.73 | 3.46 | 61 | 122 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ | ||
| 10.5 | 152 | 1.36 | 2.73 | 48 | 96 | 1.36 | 2.73 | 48 | 96 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ | ||
| DVAW-30 | 7.5 | 109 | 2.64 | 5.27 | 93 | 186 | 2.64 | 5.27 | 93 | 186 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ | |
| 8.5 | 123 | 2.58 | 5.15 | 91 | 182 | 2.58 | 5.15 | 91 | 182 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ | ||
| 10.5 | 152 | 1.78 | 3.55 | 63 | 125 | 1.78 | 3.55 | 63 | 125 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ | ||
| DVAW-37 | 7.5 | 109 | 3.25 | 6.5 | 115 | 229 | 3.25 | 6.5 | 115 | 229 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ | |
| 8.5 | 123 | 3.13 | 6.26 | 111 | 221 | 3.13 | 6.26 | 111 | 221 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ | ||
| 10.5 | 152 | 2.61 | 5.21 | 92 | 184 | 2.61 | 5.21 | 92 | 184 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ | ||
| DVAW-45W | 7.5 | 109 | 4.1 | 8.2 | 145 | 289 | 4.1 | 8.2 | 145 | 289 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 | |
| 8.5 | 123 | 3.9 | 7.81 | 138 | 276 | 3.9 | 7.81 | 138 | 276 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 | ||
| 10.5 | 152 | 3.12 | 6.23 | 110 | 220 | 3.12 | 6.23 | 110 | 220 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 | ||
| DVAW-55W | 7.5 | 109 | 4.66 | 9.32 | 165 | 329 | 4.66 | 9.32 | 165 | 329 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1600 | DN50 | |
| 8.5 | 123 | 4.43 | 8.86 | 157 | 313 | 4.43 | 8.86 | 157 | 313 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1600 | DN50 | ||
| 10.5 | 152 | 3.89 | 7.78 | 138 | 275 | 3.89 | 7.78 | 138 | 275 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1600 | DN50 | ||
| DVAW-75w | 7.5 | 109 | 6.21 | 12.41 | 222 | 444 | 6.21 | 12.41 | 222 | 444 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1750 | DN50 | |
| 8.5 | 123 | 6.2 | 12.39 | 219 | 438 | 6.2 | 12.39 | 219 | 438 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1750 | DN50 | ||
| 10.5 | 152 | 5.23 | 10.45 | 185 | 369 | 5.23 | 10.45 | 185 | 369 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1750 | DN50 | ||
| DVAW-90W | 7.5 | 109 | 8.24 | 16.48 | 291 | 582 | 8.24 | 16.48 | 291 | 582 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 2300 | DN65 | |
| 8.5 | 123 | 8.18 | 16.36 | 289 | 578 | 8.18 | 16.36 | 289 | 578 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 2300 | DN65 | ||
| 10.5 | 152 | 6.41 | 12.82 | 227 | 453 | 6.41 | 12.82 | 227 | 453 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 2200 | DN65 | ||
| DVAW-110W | 7.5 | 109 | 10.22 | 20.45 | 361 | 722 | 10.22 | 20.45 | 361 | 722 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 2800 | DN65 | |
| 8.5 | 123 | 9.91 | 19.82 | 350 | 700 | 9.91 | 19.82 | 350 | 700 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 2800 | DN65 | ||
| 10.5 | 152 | 7.78 | 15.55 | 275 | 549 | 7.78 | 15.55 | 275 | 549 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 2600 | DN65 | ||
| DVAW-132W | 7.5 | 109 | 11 | 21.99 | 389 | 776 | 11 | 21.99 | 389 | 776 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 3200 | DN65 | |
| 8.5 | 123 | 10.97 | 21.94 | 388 | 775 | 10.97 | 21.94 | 388 | 775 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 3200 | DN65 | ||
| 10.5 | 152 | 8.89 | 19.79 | 350 | 699 | 8.89 | 19.79 | 350 | 699 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 3000 | DN65 | ||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
DENAIR Factory
At DENAIR, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 90 countries across the globe. We have sales representatives who can speak English, Spanish, French, Russian and Arabic, which makes it easier for our clients from all over the world to interact and negotiate with us.
DENAIR Services
DENAIR Oil Free Screw Air Compressor Application and Installation
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd.,Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling/Water Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Water-Lubricated Air Compressors Be Used in Cold Climates?
Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:
Freezing of Water:
- Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
- Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.
Protection and Insulation:
- Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
- Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.
Alternative Lubrication Methods:
- Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
.webp)
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2024-05-13