Product Description
Hengchaowin Hot selling 5.5kw 7hp mini portable direct driven screw air compressor
Promises Every Machine Will Run Well More Than 15 Years
Brief Introduction:
Air end: Germany Technology. 30 years designed lifetime.
Motor: Top quality ,IP54 or IP55
Inverter: Danish brand inverter can save 30% energy.
Warranty: 5 years for the air end, and 2 years for the whole compressor.
Delivery time: 7-15 days.
After-sales service:we have our professional after-sales technician to instruct the installation of the whole screw air compressor.
Certificate: CE/ISO9001/ASME
We offer free pipe and valves for installation and installation diagram
Detailed Photos
How does an screw air compressor operate reliably
First of all, there must be a strong heart to provide power energy (air end+ motor). We adopt the German twin-screw air end technology design to ensure good sealing and stable air volume. At the same time, it is paired with a high-quality motor (the factory qualification rate of the motor is as high as 98.8%) to ensure a long design life for 10 years,
Then there must be good lungs to produce pure air (air intake system) using Ingersoll Randong-designed air inlet and outlet ducts to separate the incoming air from the incoming air to ensure that the oil content is low and reaches food-grade air.
Secondly, we also need a smart brain (controller) with a high-definition touch screen panel that allows you to easily control all the details of the air compressor. Everything is clear and easy to use.
Finally, if you want to upgrade your air compressor, then take a look at our variable frequency screw rotary air compressor.
It can save electricity for you while running smoothly, (permanent magnet motor + inverter). We all know that if you want to save electricity, you need to adjust the motor speed. CHINAMFG quotes the stable input of international frequency converters to save you more than 20% -30% of energy, which is the best choice for sustainable development.
Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality.
Product Parameters
Mini screw rotary air compressor with air tank, It is the trend to replace piston air compressor
Model | Power (kw/hp) |
Votalge | air flow (liter/min) |
working pressure (bar) |
air tank (liter) |
HL-4/10D | 2.4KW/4HP | 220v/50hz | 300.0 | 8-10. | 90 |
HL-4/10S | 380v/50hz | ||||
HL-5.5/10D | 4.5KW/6HP | 220v/50hz | 600.0 | 8-10. | 120 |
HL-5.5/10S | 380v/50hz | ||||
HL-7.5/10S | 5.5KW/7HP | 380v/50hz | 700.0 | 8-10. | 120 |
HL-10/10S | 7.5KW/10HP | 380v/50hz | 1000.0 | 8-10. | 120 |
HL-10/12.5 S | 380v/50hz | 800.0 | 11-12.5 | ||
HL-10 VSD /10S | 380v/50hz | 1000.0 | 8-10. | ||
HL-10 VSD /10D | 220v/50hz | 800.0 | 11-12.5 |
Company Profile
Why Choose Us
HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.
After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.
Brief introduction of factory:
1. We have been engaged in R D department, production and sales of air compressors for 30 years;
2. Our air compressor products through CE,SGS,ISO certification, with more than 20 invention patents;
3. Our products are exported to 132 countries and regions around the world;
4. Our air compressor provides a 5-year warranty.
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available
Packaging & Shipping
The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
FAQ
Q1: How long could your air compressor be used?
O: Generally, more than 10 years
Q2: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information
Q3: How about your customer service?
O: 24 hours on-line service available
Q4: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available /* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.
<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China Custom CHINAMFG Hot Selling 5.5kw 7HP Mini Portable Direct Driven Screw Air Compressor air compressor repair near me”><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China Custom CHINAMFG Hot Selling 5.5kw 7HP Mini Portable Direct Driven Screw Air Compressor air compressor repair near me”>
editor by lmc 2024-09-10
China Standard DC110V 200V 144V 310V 540V Oil-Free Air Compressor for Train 8bar 10bar 12bar 16bar 20bar High Pressure Air Pump for Engineering Vehicle 1500W2HP mini air compressor
Product Description
Model |
BST1500DC |
BST1500/15DC |
Rated Voltage (V) |
DC24V above |
DC24V above |
Input power(W) |
≤1250 |
≤1250 |
Speed (r/min) |
≥1700 |
≥1700 |
Rated pressure (KPa) |
700KPa |
1500KPa |
Max pressure(KPa) |
800KPa |
1600KPa |
Restart pressure (KPa) |
0KPa |
0KPa |
Rated volume flow (m3/h) |
9.0m3/h @700KPa |
2.4m3/h @1500KPa |
Noise dB(A) |
≤75dB(A) |
≤75dB(A) |
Ambient temperature ºC |
-5~40 ºC |
-5~40 ºC |
Insulation Class |
B |
B |
Cold insulation resistance (MΩ) |
≥100MΩ |
≥100MΩ |
Voltage resistance |
1500V/50Hz 1min (No breakdown) |
1500V/50Hz 1min (No breakdown) |
Net weight (Kg) |
16Kg |
16Kg |
Installation Dimensions (mm) |
246×127 mm( Install foot M8) |
246×127 mm( Install foot M8) |
External Dimensions (mm) |
319×195×290mm |
319×195×290mm |
Typical application | |
Respirator (ventilator) | oxygenerator |
Disinfectant sprayer | Blood analyzer |
Clinical aspirator | Dialysis / hemodialysis |
Dental vacuum drying oven | Air suspension system |
Vending machines / coffee blenders and coffee machines | Massage chair |
Chromatographic analyzer | Teaching instrument platform |
On board access control system | Airborne oxygen generator |
Why choose CHINAMFG air compressor
1. It saves 10-30% energy than the air compressor produced by ordinary manufacturers.
2. It is widely used in medical oxygen generator and ventilator .
3. A large number of high-speed train and automobile application cases, supporting – 41 to 70 ºC, 0-6000 CHINAMFG above sea level .
4. Medium and high-end quality, with more than 7000 hours of trouble free operation for conventional products and more than 15000 hours of trouble free operation for high-end products.
5. Simple operation, convenient maintenance and remote guidance.
6. Faster delivery time, generally completed within 25 days within 1000 PCs.
Machine Parts
Name: Motor
Brand: COMBESTAIR
Original: China
1.The coil adopts the fine pure copper enameled wire, and the rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.
2.The customer can choose the insulation grade B or F motor according to What he wants.
3.The motor has a built-in thermal protector, which can select external heat sensor.
4.Voltage from AC100V ~120V, 200V ~240V, 50Hz / 60Hz, DC6V~200V optional ; AC motor can choose double voltage double frequency ; DC Motor can choose the control of the infinitely variable speed.
Machine Parts
Name: Bearing
Brand: ERB , CHINAMFG , NSK
Original: China ect.
1.Standard products choose the special bearing ‘ERB’ in oil-free compressor, and the environment temperature tolerance from -50ºC to 180 ºC . Ensure no fault operation for 20,000 hours.
2.Customers can select TPI, NSK and other imported bearings according to the working condition.
Machine Parts
Name: Valve plates
Brand: SANDVIK
Original: Sweden
1.Custom the valve steel of Sweden SANDVIK; Good flexibility and long durability.
2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.
Machine Parts
Name: Piston ring
Brand: COMBESTAIR-OEM , Saint-Gobain
Original: China , France
1.Using domestic famous brand–Polytetrafluoroethylene composite material; Wear-resistant high temperature; Ensure more than 10,000 hours of service life.
2.High-end products: you can choose the ST.gobain’s piston ring from the American import.
serial number |
Code number | Name and specification | Quantity | Material | Note |
1 | 212571109 | Fan cover | 2 | Reinforced nylon 1571 | |
2 | 212571106 | Left fan | 1 | Reinforced nylon 1571 | |
3 | 212571101 | Left box | 1 | Die-cast aluminum alloy YL104 | |
4 | 212571301 | Connecting rod | 2 | Die-cast aluminum alloy YL104 | |
5 | 212571304 | Piston cup | 2 | PHB filled PTFE | |
6 | 212571302 | Clamp | 2 | Die-cast aluminum alloy YL102 | |
7 | 7050616 | Screw of cross head | 2 | Carbon structural steel of cold heading | M6•16 |
8 | 212571501 | Air cylinder | 2 | Thin wall pipe of aluninun alloy 6A02T4 | |
9 | 17103 | Seal ring of Cylinder | 2 | Silicone rubber | |
10 | 212571417 | Sealing ring of cylinder cover | 2 | Silicone rubber | |
11 | 212571401 | Cylinder head | 2 | Die-cast aluminum alloy YL102 | |
12 | 7571525 | Screw of inner hexagon Cylinder head | 12 | M5•25 | |
13 | 17113 | Sealing ring of connecting pipe | 4 | Silicong rubber | |
14 | 212571801 | Connecting pipe | 2 | Aluminum and aluminum alloy connecting rod LY12 | |
15 | 7100406 | Screw of Cross head | 4 | 1Cr13N19 | M4•6 |
16 | 212571409 | Limit block | 2 | Die-cast aluminum alloy YL102 | |
17 | 000402.2 | Air outlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
18 | 212571403 | valve | 2 | Die-cast aluminum alloy YL102 | |
19 | 212571404 | Air inlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
20 | 212571406 | Metal gasket | 2 | Stainless steel plate of heat and acidresistance | |
21 | 212571107 | Right fan | 1 | Reinforced nylon 1571 | |
22 | 212571201 | Crank | 2 | Gray castiron H20-40 | |
23 | 14040 | Bearing 6006-2Z | 2 | ||
24 | 70305 | Tighten screw of inner hexagon flat end | 2 | M8•8 | |
25 | 7571520 | Screw of inner hexagon Cylinder head | 2 | M5•20 | |
26 | 212571102 | Right box | 1 | Die-cast aluminum alloy YL104 | |
27 | 6P-4 | Lead protective ring | 1 | ||
28 | 7095712-211 | Hexagon head bolt | 2 | Carbon structural steel of cold heading | M5•152 |
29 | 715710-211 | Screw of Cross head | 2 | Carbon structural steel of cold heading | M5•120 |
30 | 16602 | Light spring washer | 4 | ø5 | |
31 | 212571600 | Stator | 1 | ||
32 | 70305 | Lock nut of hexagon flange faces | 2 | ||
33 | 212571700 | Rotor | 1 | ||
34 | 14032 | Bearing 6203-2Z | 2 |
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our factory is located in Linbei industrial area No.30 HangZhou City of ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: Generally, 1000 pcs can be delivered within 25 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
Q7:Can you accept non-standard customization?
A7:We have the ability to develop new products and can customize, develop and research according to your requirements
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Remote Guided Maintenance |
---|---|
Warranty: | 2 Years |
Principle: | Mixed-Flow Compressor |
Application: | Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type |
Performance: | Low Noise, Variable Frequency, Explosion-Proof |
Mute: | Mute |
Samples: |
US$ 200/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.
editor by CX 2024-05-16
China Hot selling Mini Direct Driven Air Compressor Portable 2 HP 8bar Air Compressor arb air compressor
Product Description
Air compressor
Characteristics:
The appearance of the machine adopts a strong fully enclosed structure, which can prevent the machine from damaging parts in the process of transportation
Application
As an important form of energy production, baishrinkable machine by air pressure is widely used in every link of life zhi production.Widely used machinery, metallurgy, electric power, medicine, packaging, chemicals, food, mining, textile, traffic, such as various industries become the mainstream products of air compressor, compressed air is to a standard atmospheric pressure of the air through the way of energy output to meet user demand of air equipment, energy conversion is usually can be understood as a mechanical energy into kinetic energ
Technical parameters
Our wishes
The sun shines all over the world, we are committed to become the CHINAMFG of the world pump industry
Our spirit
Industrious, brave, self disciplined and efficient
Canton Fair
Advantages: | |
[1] optimum quality,high performance and low maintenance. | |
[2] reasonable price | |
[3] various specification and models for your choice. | |
[4] we are 18-year leading air compressor factory with rich experience. | |
[5] our motor are with thermal protection systerm. | |
[6] better service consciousness. we insist that after-sale service is not the end of sale. but the begining of sale. |
After sales: |
1).We are very glad that customer give us some suggestion for price and products which you bought. |
2).If any question, please let us know it in the first by E-mail or Telephone. We can deal with them for you in time. |
3).We will send many news styles in every week to our old customers. |
We promise to: |
1).Offer our customers the lowest prices of stainless steel centrifugal pump. |
2).Streamline the buying and paying processes. |
3).Deliver goods to our customers all over the world with speed and precision. |
3).Deliver goods to our customers all over the world with speed and precision. |
5).Should you have any question or requirement, pls feel free to contact us. Sincerely hope to build a long-term friendly cooperation relationship with you! |
1. When can I get the quotation? We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price, please tell us so that we will regard your inquiry priority. |
|
2. How can I get a sample to check your quality? After price confirmation, you can require for samples to check our quality. |
|
3.What kind of files do you accept for printing? PDF, Core Draw, high resolution JPG . |
|
4.Can you do the design for us? Yes. We have a professional team having rich experience in acrylic display design and manufacturing.
|
|
5.How long can I expect to get the sample? 3-5 working days for samples. |
|
6.What about the lead time for mass production? 15-20 working days for mass production.It depends on your quantity,and we will try our best to meet your needs. |
|
7.What is your terms of delivery? EXW, FOB, CIF, etc. |
Certification:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | Yes |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Series Arrangement |
Cylinder Position: | Vertical |
Samples: |
US$ 0/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.
editor by CX 2024-05-15
China Custom Industrial Stationary Similar CHINAMFG Rand CHINAMFG 7 8 10 Bar 55kw Medical Oil Free Electric Direct Driven Pm VSD Rotary Screw Type Air Compressor mini air compressor
Product Description
Product Description
Product Introduction
The Airend of Kingair water lubricated Oil-free CHINAMFG adopts PEEK door rotor, aerospace grade stainless steel rotor and a new production process. Using nano-scale water filter core and Inlet reverse osmosis system, it can provide a stable and qualified lubricating water treatment system for the compressor. The oil-free machine system can change water without stopping according to the set water change cycle, reducing daily maintenance costs and making use more worry-free. The system is simple, reduces parts and failure points, and improves reliability. Low energy consumption, isothermal compression, higher volumetric efficiency, more than 15% energy saving than two-stage compression dry oil-free screw compressor.
Detailed Photos
Product Parameters
Model | KAW-55A |
Power(Kw) | 55Kw |
Pressure(Bar) | 10Bar |
Volume flow(m3/min) | 8.55m3/min |
Air Outlet | 1 1/2” |
Weight(kg) | 1470Kg |
Dimension(mm) | 1980×1300×1750mm |
Certifications
Packaging & Shipping
Installation Instructions
Company Profile
ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.
FAQ
Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.
Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.
Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.
Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.
Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.
Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.
Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | on Line Technical Support |
---|---|
Warranty: | 1 Year |
Lubrication Style: | Lubricated |
Cooling System: | Water Cooling |
Power Source: | AC Power |
Cylinder Position: | Horizontal |
Samples: |
US$ 22200/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.
editor by CX 2024-05-14
China wholesaler 1.5-7.5HP 1.1kw High Power Copper Wire Silent Single-Phase 4 Pole Motor Oil-Free Silent Air Compressor mini air compressor
Product Description
Oil-free Air Compressor | |
Model | SG-F1100*5-230L |
Electric Motor | 1100W*5/7.5HP |
Voltage | 220V |
Frequency | 50Hz |
Tank | 230L |
Pressure | 8BAR |
Exhaust Volume | 1.0 m³/min |
Speed | 1450RPM |
Tank Size | 450*1200*3.5MM |
Company Info.
Company Profile
Business Type: | Manufacturer/Factory & Trading Company | |
Main Products: | Direct Driven Air Compressor , Oil Free Series Compressor , Belt Driven Air Compressor , … |
|
Number of Employees: | 100 | |
Year of Establishment: | 2008-03-16 | |
Management System Certification: | ISO9001:2015 | |
OEM/ODM Availability: | Yes |
Shengang, an expert in high-end machinery and equipment manufacturing, is located in HangZhou, ZHangZhoug. It is a large-scale manufacturing enterprise with a modern factory building of 50,000 square meters, a product research and development center and an international management system.
We focus on the R&D and manufacturing of various types of motors, air compressors and cleaning equipment. After more than 30 years of brand accumulation, Kamioka products have won a number of utility model patents and invention patents. The products sell well all over the world and are well received by the majority of supporting manufacturers. trust and support.
The company adheres to the purpose of “pursuing perfect quality and meeting customer needs”. The best products, the strictest quality control, the most reasonable prices and the most honest services are Kamiokande’s commitment to you. We sincerely welcome all Chinese and foreign partners to cooperate and work together for a CHINAMFG situation and move towards a better future!
Main Feature:
1. Standard stroke cylinder pump head, smooth operation and high production efficiency.
2. Thickened aluminum cast piston connecting rod, high strength, wear resistance, high temperature resistance and other characteristics.
3. Full copper wire motor, higher working efficiency, reliable operation and CHINAMFG structure.
4. Thickened hot-rolled steel plate gas storage tank, high strength and high pressure resistance thickness.
5. Accurate original pressure gauge, standard CHINAMFG display is accurate, safe and stable work.
6. Suction and exhaust valve, special valve cylinder, not afraid of high temperature.
7. Brand bearings, high quality bearings have long service life.
8. Thickened belt, the belt is tough and can mitigate impact, runs smoothly and has low operating noise.
9. Magnetic protector: Provide protective measures when the motor encounters overcurrent, overload, phase loss, short circuit, leakage, and imbalance.
10. Large capacity fuel tank design, low fuel consumption operation.
Certificates:
1.We have already got CE certificates for air compressor.
2.ISO9001 certificate for the factory.
We have invention patents for air compressors and high pressure washers.
We have air compressor energy efficiency labels.
Packing:
Outer packing is honey-comb carton with belts,inner packing is a transparent bag.We could accept customers special request,such as:print brand,specification,good’s picture.
Frequency Asked Question:
1.Are you the manufacturer or trading company?
We are the manufacturer.
2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
T/T,L/C at sight or cash.
5.What’s the lead time?
About 30 days after receiving the deposit on our bank account.
6.Do you accept sample order?
Yes,we accept.
7.What about the cost of sample?
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1×40’HQ container in the future.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Duplex Arrangement |
Cylinder Position: | Vertical |
Samples: |
US$ 476/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Water-Lubricated Compressors Be Used in High-Pressure Applications?
Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:
Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.
The ability of a water-lubricated compressor to operate at high pressures depends on several factors:
- Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
- Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
- Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
- Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.
It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.
When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.
How Are Water-Lubricated Air Compressors Used in Automotive Applications?
Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:
Tire Inflation:
- Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
- Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.
Painting and Finishing:
- Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
- Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.
Brake and Suspension Systems:
- Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
- Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.
Diagnostic and Testing Equipment:
- Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
- Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.
Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.
editor by CX 2024-05-13
China manufacturer 12V Heavy Duty 30mm Dual Cylinder Tire Inflator, Mini Air Compressor 12v air compressor
Product Description
12V heavy duty double cylinder mini tire inflator / air compressor
Cylinder | 2*30 mm |
Max pressure | 150 PSI |
Operating Voltage | 12 Volts |
Max current | 30 Amps |
Power cord | 3 CHINAMFG power cord with battery clip |
Air hose | 5 CHINAMFG air hose with 150PSI pressure gauge |
Material | metal |
Spare parts | 5m air hose with pressure gauge, 3 inflatable adaptors, automotive mini blade fuse, toolbox/bag/Giftbox |
Complete ready-to-go Kit
Made for commercial Vehicles. In the Toolbox, you get the heavy duty tire inflator/ mini air compressor with thick power cables and battery clamps to connect to any 12 Volts batteries. and an 5 CHINAMFG heavy duty air hose with inline 150PSI pressure gauge, inflatable adaptors for a variety of toys.
5 CHINAMFG extention air hose with large gradient pressure gauge for Accurate inflation, 150 CHINAMFG / 10 Bar
Inline blade fuse to protect the vehicle electronics
Fitted with quick release battery clips to connect to any 12 Volts battery.
Anti-vibration rubber mounted feet for stable placement when inflating tires.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 2 Years |
---|---|
Warranty: | 2 Years |
Certification: | RoHS, CE, Ukca |
Voltage: | 12V |
Max Pressure: | 150 Psi |
AMPS: | 30A |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.
editor by CX 2024-05-08
China OEM Hb30 Mini Small Portable Medical Dental Outstanding Quiet Silent Oil Free Air Compressor for Sale portable air compressor
Product Description
Product Description
Features
1. The machine is light, easy to carry.
2. Without refueling in use process, low energy consumption, simple maintenance and low cost.
3. The machine little vibration, low noise
4. Compared with similar machines, the air charging time is faster and the work is reliable.
5. Suitable for food, medical treatment, woodworking decoration, scientific research institutions, and compressed gas as a power source in the field.
Product Parameters
Model | HB12 | HB30 | HB35 | HB50 | HB70A | HB90A | HB120 | HB200 |
Input power (KW) |
0.68 | 0.75 | 0.85 | 1.5 | 1.36 (0.68*2) |
2.04 (0.68*3) |
3.4 (0.85*4) |
5.1 (0.85*6) |
Voltage (V/Hz) | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 |
Current (A) | 2.8 | 3.0 | 3.8 | 6 | 6.8 | 9.0 | 13 | 20 |
Rotate speed (rpm/min) | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 |
Air Intake (L/min) | 116 | 128 | 150 | 180 | 256 | 580 | 720 | 950 |
Exhaust pressure(Mpa) | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 |
Noise (db(A)) | 66 | 66 | 68 | 71 | 71 | 73 | 85 | 85 |
Volume (L) | 12 | 30 | 35 | 50 | 70 | 90 | 160 | 200 |
Weight (KG) | 18 | 23 | 26 | 39 | 43 | 69 | 105 | 150 |
Dimensions (CM) | 53*23*55 | 54*30*56 | 64*32*61 | 70*30*65 | 70*35*70 | 100*35*70 | 120*41*75 | 150*45*85 |
Detailed Photos
Company Profile
Founded in 1997, our factory has become 1 of the most powerful air compressor equipment and engineering drilling equipment manufacturers in China, and is a member of the national compressor industry association, drilling machinery and pneumatic tools industry association, and a drafting unit of national standards. All the products have passed the quality system certification of ISO9001:2000 and national inspection-free products.
Its total registered capital of 245 million yuan, holding 10 subsidiaries, is a set of technology research and development,
production and manufacturing, sales and service functions in 1 of the modern machinery and equipment manufacturing enterprises,the enterprise covers an area of 31000m2. The group has more than 1100 employees, including more than 100 middle and senior technical personnel. The group has established close cooperative relations with many domestic famous universities and other scientific research institutes, with strong product research and development capabilities.
Now as the main exporter of drilling rigs and air compressors equipment in China. It has exported to more 60 countries such as Southeast Asia, South America, Africa, Eastern Europe, Russia etc. Excellent quality and perfect service gain the consistent praise from customers.
FAQ
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.
Q4: What about the voltage of products??Can they be customized?
A4: Yes, of course. The voltage can be customized according to your equirement.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 20-30 days.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
Q7 Which trade term can you accept?
A7: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 24 Hours Online Service |
---|---|
Warranty: | 1 Year |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Structure Type: | Open Type |
Product Name: | Oil Free Air Compress |
Customization: |
Available
|
|
---|
Are There Specific Water Treatment Requirements for Water-Lubricated Compressors?
Water-lubricated compressors often have specific water treatment requirements to ensure optimal performance, prevent equipment damage, and maintain the desired water quality. Here’s a detailed explanation of the water treatment considerations for water-lubricated compressors:
Water Quality:
- Purity: The water used for lubrication should be clean and free from impurities, contaminants, or excessive minerals. Impurities in the water can lead to corrosion, blockages, and reduced lubrication effectiveness. Water sources should be evaluated to ensure they meet the required purity standards.
- Chemical Composition: The chemical composition of the water should be within acceptable limits to avoid any adverse reactions with compressor components or lubricants. Certain water characteristics, such as pH, alkalinity, hardness, and conductivity, need to be monitored and controlled to prevent issues like scaling, fouling, or chemical reactions.
Water Treatment Methods:
- Filtration: Filtration systems are commonly used to remove particulate matter, sediment, or debris from the water. Filters can range from simple strainers to more advanced filtration systems, depending on the specific water quality requirements and the level of filtration needed.
- Water Softening: If the water has high levels of hardness minerals, such as calcium and magnesium, water softening methods may be necessary. Water softeners use ion exchange or other processes to remove the hardness minerals, which can help prevent scaling and reduce the risk of deposits in the compressor system.
- Reverse Osmosis (RO): Reverse osmosis is a water treatment method that uses a semi-permeable membrane to remove dissolved solids, ions, and impurities from the water. RO systems can effectively reduce the total dissolved solids (TDS) and improve the overall water quality, making it suitable for water-lubricated compressors.
- Chemical Treatment: In some cases, chemical treatments may be required to control water chemistry parameters, such as pH or alkalinity. Chemical additives can be used to adjust or stabilize water chemistry within the desired range, preventing corrosion, scaling, or other issues.
Water treatment requirements for water-lubricated compressors can vary depending on factors such as the compressor design, operating conditions, water source quality, and specific application requirements. It is essential to consult the compressor manufacturer’s recommendations and guidelines regarding water treatment. The manufacturer’s guidelines will provide specific information on water quality limits, treatment methods, and any required maintenance procedures related to water treatment.
Regular monitoring of water quality, including periodic testing and analysis, is recommended to ensure that the water treatment measures are effective and the desired water quality is maintained. Water treatment systems should be properly maintained and periodically serviced to ensure their optimal performance and prevent any potential issues that could affect the operation and longevity of water-lubricated compressors.
How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?
Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:
Positive Effects:
- Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
- Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
- Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.
Negative Effects:
- Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
- Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
- System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.
Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.
How Do Water-Lubricated Air Compressors Compare to Oil-Lubricated Ones?
Water-lubricated air compressors and oil-lubricated air compressors have distinct differences in terms of lubrication method, performance, maintenance, and environmental impact. Here is a detailed comparison between the two:
Water-Lubricated Air Compressors | Oil-Lubricated Air Compressors | |
---|---|---|
Lubrication Method | Water is used as the lubricant in water-lubricated compressors. It provides lubrication and heat dissipation. | Oil is used as the lubricant in oil-lubricated compressors. It provides lubrication, sealing, and heat dissipation. |
Performance | Water lubrication offers efficient heat dissipation and cooling properties. It can effectively remove heat generated during compressor operation, preventing overheating and prolonging the compressor’s lifespan. Water lubrication can be suitable for applications where high heat generation is a concern. | Oil lubrication provides excellent lubrication properties, ensuring smooth operation and reduced friction. It offers good sealing capabilities, preventing air leakage. Oil-lubricated compressors are often preferred for heavy-duty applications that require high pressure and continuous operation. |
Maintenance | Water lubrication generally requires less maintenance compared to oil lubrication. Water does not leave sticky residues or deposits, simplifying the cleaning process and reducing the frequency of lubricant changes. However, water lubrication may require additional measures to prevent corrosion and ensure proper water quality. | Oil lubrication typically requires more maintenance. Regular oil changes, filter replacements, and monitoring of oil levels are necessary. Contaminants, such as dirt or moisture, can adversely affect oil lubrication and require more frequent maintenance tasks. |
Environmental Impact | Water lubrication is more environmentally friendly compared to oil lubrication. Water is non-toxic, biodegradable, and does not contribute to air or water pollution. It has a lower environmental impact and reduces the risk of contamination in case of leaks or spills. | Oil lubrication can have environmental implications. Oil leaks or spills can contaminate the environment, including air, soil, and water sources. Used oil disposal requires proper handling to prevent pollution. Oil-lubricated compressors also release volatile organic compounds (VOCs) into the air, contributing to air pollution. |
In summary, water-lubricated air compressors excel in efficient heat dissipation, require less maintenance, and have a lower environmental impact. On the other hand, oil-lubricated air compressors offer excellent lubrication properties and are suitable for heavy-duty applications. The choice between water and oil lubrication depends on specific requirements, operating conditions, and environmental considerations.
editor by CX 2024-05-07
China Professional Havo Kompressori Screw Portable Used Industrial CHINAMFG Mini Max Part Dental Oil Piston Free Rotary AC Belt Air Pump Compressor with Hot selling
Product Description
NO. | Specification | Tank (mm) | Voltage | Power(HP) | Air Flow (L/MIN) | Pressure (Bar) | Speed (RPM) | NW (KGS) | GW (KGS) | Carton (L) | Carton (W) | Carton (H) | Carton (CBM) |
1 | 0.036/8 51mm*1 1HP 30L | 240*520 | 220 | 1 | 36 | 8 | 1100 | 31 | 35 | 0.71 | 0.38 | 0.65 | 0.17537 |
2 | 0.036/8 51mm*1 1HP 40L | 280*520 | 220 | 1 | 36 | 8 | 1100 | 33 | 38 | 0.75 | 0.38 | 0.7 | 0.1995 |
3 | 0.12/8 51mm*2 2HP 60L | 280*750 | 220 | 2 | 120 | 8 | 985 | 53 | 62 | 0.99 | 0.43 | 0.78 | 0.332046 |
4 | 0.12/8 51mm*2 2HP 85L | 320*800 | 220 | 2 | 120 | 8 | 985 | 62 | 72 | 1.07 | 0.43 | 0.78 | 0.358878 |
5 | 0.25/8 65mm*2 3HP 100L | 350*800 | 220 | 3 | 250 | 8 | 985 | 67 | 80 | 1.1 | 0.43 | 0.83 | 0.39259 |
6 | 0.25/8 65mm*2 3HP 120L | 350*950 | 220 | 3 | 250 | 8 | 985 | 73 | 88 | 1.25 | 0.44 | 0.83 | 0.4565 |
7 | 0.25/8 65mm*2 3HP 150L | 400*1571 | 220 | 3 | 250 | 8 | 985 | 79 | 95 | 1.3 | 0.47 | 0.92 | 0.56212 |
8 | 0.25/8 65mm*2 3HP 200L | 450*1571 | 220 | 3 | 250 | 8 | 985 | 95 | 109 | 1.32 | 0.52 | 0.98 | 0.672672 |
9 | 0.36/10 65mm*3 4HP-4 200L | 450*1571 | 220 | 4 | 360 | 10 | 830 | 108 | 125 | 1.32 | 0.52 | 0.98 | 0.672672 |
10 | 0.36/10 65mm*3 4HP 200L | 450*1571 | 380 | 4 | 360 | 10 | 950 | 110 | 127 | 1.32 | 0.52 | 0.98 | 0.672672 |
11 | 0.36/8 65mm*3 4HP-4 300L | 500*1250 | 220 | 4 | 360 | 8 | 830 | 146 | 166 | 1.6 | 0.6 | 1.05 | 1.008 |
12 | 0.36/8 65mm*3 4HP 300L | 500*1250 | 380 | 4 | 360 | 8 | 985 | 146 | 166 | 1.6 | 0.6 | 1.05 | 1.008 |
13 | 0.6/12.5 90mm*1+65mm*1 5.5HP-4 300L | 500*1250 | 380 | 5.5 | 600 | 12.5 | 735 | 161 | 185 | 1.6 | 0.6 | 1.05 | 1.008 |
14 | 0.67/12.5 80mm*2+65mm*1 7.5HP 300L | 500*1250 | 380 | 7.5 | 670 | 12.5 | 800 | 177 | 204 | 1.6 | 0.61 | 1.12 | 1.5712 |
15 | 0.67/8 80mm*3 7.5HP 500L | 600*1500 | 380 | 7.5 | 670 | 8 | 835 | 220 | 260 | 1.91 | 0.71 | 1.22 | 1.654442 |
16 | 0.9/8 90mm*3 10HP 500L | 600*1500 | 380 | 10 | 900 | 8 | 835 | 225 | 265 | 1.91 | 0.71 | 1.22 | 1.654442 |
17 | 1.05/12.5 105mm*3+55mm*2 10HP-4 500L | 600*1500 | 380 | 10 | 1050 | 12.5 | 680 | 290 | 340 | 1.91 | 0.72 | 1.35 | 1.85652 |
18 | 1.6/12.5 100mm*2+80mm*1 15HP-4 500L | 600*1500 | 380 | 15 | 1600 | 12.5 | 660 | 355 | 405 | 1.92 | 0.72 | 1.45 | 2.00448 |
Frequency Asked Question
1.Are you the manufacturer or trading company?
We are the manufacturer.
2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
T/T,L/C at sight or cash.
5.What’s the lead time?
In 15 days on receipt of deposit .
6.Do you accept sample order?
Yes,we accept.
7.What about the cost of sample?
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | 1year |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.
editor by CX 2024-05-02
China factory Oil Free Oxygen Making Mini Air Compressor Head in China Gle280A Oxygen Air Compressor supplier
Product Description
Product Paramenter
ITEM NO |
GLE280A |
Name |
Oil free air compressor |
Packing |
2 pcs / carton case , 54 pcs / pallet |
Weight |
6.0 kg |
Dimension |
235*101*163 mm |
Installation size |
83*148 mm |
Air flow rate (L/min@bar) |
>=75 L/min @2 bar |
Technical Specification |
Voltage :220V 50Hz /60Hz ; 110v 60Hz ; Power: <=370 W ; Rated air flow rate: >=75 L/min @2 bar ; Rate working pressure : 2 bar ; Noise : ≤52dB(A) ; Speed: 1440rpm /1700 rpm ; Temperature : -5ºC-40ºC ; Thermal protector : 135ºC ;
Accessories : 1x capacitor , 2xL fittings and 1x safe valve
|
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Warranty: | Two Years |
---|---|
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Brand Name: | OEM |
Voltage: | 220V 50Hz |
Rated Air Flow Rate: | ≧75 L/Min @2 Bar |
Samples: |
US$ 65/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.
editor by CX 2024-04-29
China Good quality Wholesale Price 0.75kw 1.1kw 1.5kw 1HP 2HP 3HP 9L 24L 30L 40L 50L Mini Portable Direct Driven Piston Oil Air Compressor lowes air compressor
Product Description
Wholesale Price 0.75kw 1.1kw 1.5kw 1HP 2HP 3HP 9L 24L 30L 40L 50L Mini Portable Direct Driven Piston Oil Air Compressor
Tank volume | 120L/31.7Gal |
Volt | 230V/50Hz |
Power | 3Kw |
Output power | 4.0Hp |
Speed | 950Rpm |
Noise | 79dB |
Displacement | 420L/min |
Work pressure | 8Bar |
Weight | 85Kg |
Size | 1280*500*880mm |
Product Advantage
Application
Packaging & Shipping
Company Profile
Certifications
Exhibition
FAQ
Why Choose BISON
1.Supply you top quality products with Competitive Price under the same quality level, different products according to your different market demands.
2.Strictly Control the whole production process and guarantee punctual delivery, Test each of our products 1 by 1 before packing to ensure the quality.
3.Supply you a good pre-sale, in-sale and after-sale Service.We’re not just working partners, but also Friends and Family.
4.When you come to our Factory, we will try our best to supply you all services to make you feel like at home.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | with |
---|---|
Warranty: | One Year |
Lubrication Style: | Lubricated |
Cylinder Position: | Horizontal |
Compress Level: | Single-Stage |
Tank Volume: | 24L/6.3gal |
Samples: |
US$ 95/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.
editor by CX 2024-04-26