Product Description
CHINAMFG Oil-free Air Compressor
BROTIE oil-free lubricated air compressors belong to reciprocating, piston, single action and air-cooled portable air compressors, they are designed for the departments which need pure air source and higher environmental requirements. There is no need to add lubricating oil for this product, the exhaust gas does not contain oil and oil vapor and won’t pollute environment, compressed air consuming equipment and its product, therefore, it is an environment-friendly energy-saving product.
1. When it is used as a general power gas source, it is more convenient in use than oil lubricated air compressor and its maintenance cost is lower.
2. As the simplest and optimum equipment which provides high-quality oilless compressed air, it saves complicated oil filtering and treatment equipment, thus saving a lot of equipment expenditure and maintenance cost.
Select a machine type with at least 20% allowance when determining compressed air consumption.
Please take into account the condition that consumption of compressed air may be increased in the future. Correct type selection will reduce purchase and use cost.
For detailed models, please contact with CHINAMFG with no hesitation.
| Model | Capacity (m 3 /min) |
Discharge pressure (Mpa) |
Speed (r/min) |
Noise bd(A) |
Motor Power (KW) |
Size of discharge | Air Container Volume (M3) |
dimensions (L*W*H) |
| ZW-0.1/7 | 0.1 | 0.7 | 980 | ≤ 78 | 1.5(220V) | G1/4″ | 0.04 | 750*350*750 |
| ZW-0.24/7 | 0.24 | 0.24 | 950 | ≤ 81 | 2.2(380V) | G1/2″ | 0.08 | 1140*400*900 |
| ZW-0.3/7 | 0.3 | 0.7 | 950 | ≤ 81 | 2.2(380V) | G1/2″ | 0.08 | 1140*400*900 |
| VW-0.45/7 | 0.45 | 0.7 | 920 | ≤ 83 | 4(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.6/7 | 0.6 | 0.7 | 950 | ≤ 84 | 5.5(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.42/10 | 0.42 | 1.0 | 920 | ≤ 84 | 4(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.5/14 | 0.5 | 1.4 | 670 | ≤ 84 | 5.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.6/10 | 0.6 | 1.0 | 740 | ≤ 84 | 5.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.9/7 | 0.9 | 0.7 | 810 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.9/10 | 0.9 | 1.0 | 810 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.7/12.5 | 0.7 | 1.25 | 740 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-1.25/7 | 1.25 | 0.7 | 860 | ≤ 85 | 11(380V) | G3/4″ | 0.28 | 1600*650*1200 |
| WW-1.25/10 | 1.25 | 1.0 | 770 | ≤ 85 | 11(380V) | G3/4″ | 0.28 | 1600*650*1200 |
| WW-1.6/10 | 1.6 | 1.0 | 820 | ≤ 85 | 15(380V) | G3/4″ | 0.32 | 1660*650*1220 |
| WW-1.8/10 | 1.8 | 1.0 | 900 | ≤ 86 | 15(380V) | G3/4″ | 0.32 | 1660*650*1220 |
| WW-1.2/10 | 1.2 | 1.0 | 740 | ≤ 84 | 5.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.8/7 | 1.8 | 0.7 | 810 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.8/10 | 1.8 | 1.0 | 810 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.4/12.5 | 1.4 | 1.25 | 740 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-2.5/7 | 2.5 | 0.7 | 860 | ≤ 86 | 11*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-2.5/10 | 2.5 | 1.0 | 770 | ≤ 86 | 11*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-3.0/7 | 3.0 | 0.7 | 770 | ≤ 86 | 11*2(380V) | G1″ | 0.32 | 1850*1250*1400 |
| WW-3.0/10 | 3.0 | 1.0 | 810 | ≤ 86 | 11*2(380V) | G1″ | 0.32 | 1850*1250*1400 |
| WW-3.2/7 | 3.2 | 0.7 | 820 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.2/10 | 3.2 | 1.0 | 820 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.6/7 | 3.6 | 0.7 | 900 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.6/10 | 3.6 | 1.0 | 900 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-4.8/10 | 4.8 | 1.0 | 900 | ≤ 86 | 15*2(380V) 11*1(380V) | G3/2″ | / | 2210*1360*1050 |
| Lubrication Style: | Oil-free |
|---|---|
| Compressed Grade: | 1-4 |
| Place of Origin: | China |
| Working Principle: | Oil-Free Lubrication Reciprocating Type Booster |
| Cooling Type: | Wind or Water Cooling |
| Mute: | Yes |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-10-24
China high quality Briggs Stratton Air Compressor Oil Free 3321751 4.5-Gallon/17 Liters Qpt air compressor price
Product Description
HangZhou CHINAMFG Marine Equipment Co., Ltd. covers an area of 24600 square meters, located in jiangyan Economic Development Zone, fumin CHINAMFG Park, with comprehensive test bench and large lifting equipment test bench, is specialized in the production of Marine safety life-saving equipment enterprises.
The company has the leading technology, strict management, fine equipment, strictly by the China Classification Society CCSISO9001:2008 quality management system certification to ensure, the main production: Marine lifeboat/life raft landing gear, gravity inverted boom davit, free landing davit, gangway winch, lifeboat/rescue boat winch, Marine low, medium and high pressure air compressor and all types of fully enclosed/open lifeboat and rescue boat.
HangZhou CHINAMFG Marine Equipment Co., Ltd. is the production of maritime rescue equipment professional enterprise, main products are the life boat winch, the rescue boat winch, free fall type lifeboat launching device, gravity pour davit arm type, single arm liferaft lowered device, single arm boat/raft hanger and cranes, electric, pneumatic) ladder winch and Marine air compressor and various kinds of form a complete set of lifeboat.
Corporate culture: To build the world heavy industry carrier
— Corporate philosophy
Enterprise tenet: synchronizing with the world and consumers
Enterprise vision: strict management, sustainable development and satisfactory service
Enterprise values: The pursuit of quality The pursuit of Haihao
Enterprise spirit: Honesty, diligence and earnest
Haihao ships are interwoven with glory and dream, hardships and challenges, and will continue to burst out brilliant brilliance in continuous development and struggle
Haihao Marine respects every employee’s hard work, creates a level playing field for employees, and gives full play to their potential
Q: What are the available shipping methods?
A: Port location: HangZhou or ZheJiang , China Shipping to: CHINAMFG Shipping method: by sea, by air, by express Estimated delivery dates depend on specific order list, shipping service selected and receipt of cleared payment. Delivery time may vary.
Q: What payment methods are supported?
A: Payment: By T/T, Western Union, Money Gram for samples 100% with the order, for production,30% paid for deposit by before production arrangement, the balance to be paid before shipment. Negotiation is accepted.
Q: How to control the quality of CHINAMFG Products?
A: Products Material: Strictly control the material used, make sure they can meet international requested standards, and maintain long working life.
Semi-finished products inspection: We examine the proudcts100% before finished. Such as Visual Inspection, Thread testing, Leak Testing, and so on.
Production line test: Our engineers will inspect machines and lines at fixed period.
Finished Product Inspection: We do the test according to ISO19879-2005, leakage test, proof test, re-use of components, burst test, cyclic endurance test, vibration test, etc.
QCTeam:A QC team with more than 10 professional and technical personnel. To ensure 100% products checking.
Q: How long is the product date of delivery probably?
A: The different product, as well as the diferent run quantity can affect the date of delivery, but in ordinary circumstances product date of delivery about 30 days. Most of products have stock, contact us anytime to get more information.
Q: How to Custom-made(OEM/ODM)?
A: If you have a new product drawing or a sample, please send to us, and we can custom-made the product as your required. We wllalso provide our professional advices of the products to make the design to be more realized & maximize the performance.
Q: How about the mini order quantity?
A: We don’t have strict requirments on most items, due to we have stock. More information can send us the enquiry list, we check and reply you. For custom-made, MoQ will be adviced due to the specific product.
| After-sales Service: | After-Sales |
|---|---|
| Warranty: | After-Sales |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 5000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Air Compressors Be Used in Cold Climates?
Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:
Freezing of Water:
- Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
- Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.
Protection and Insulation:
- Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
- Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.
Alternative Lubrication Methods:
- Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
.webp)
How Do Water-Lubricated Air Compressors Compare in Terms of Maintenance Costs?
When comparing water-lubricated air compressors to other types of compressors, there are several factors that can influence the maintenance costs. Here’s a detailed explanation of how water-lubricated air compressors compare in terms of maintenance costs:
Initial Investment:
- Higher Initial Cost: Water-lubricated air compressors tend to have a higher initial cost compared to oil-lubricated compressors. This is primarily due to the additional components required for the water-lubrication system, such as water pumps, filters, and separators. The higher initial investment can impact the overall cost of the compressor system.
Lubrication System Maintenance:
- Water Treatment and Filtration: Water-lubricated compressors may require additional maintenance for water treatment and filtration systems. Regular monitoring, maintenance, and replacement of filters or treatment media are necessary to ensure the water quality remains suitable for lubrication. The cost of water treatment and filtration maintenance should be considered in the overall maintenance costs.
- Water Quality Monitoring: Monitoring the quality of the water used in water-lubricated compressors is crucial. This may involve periodic water analysis, temperature monitoring, and water chemistry checks. The cost of water quality monitoring should be factored into the maintenance costs.
Component Lifespan and Replacement:
- Extended Component Lifespan: Proper water-lubrication and cooling can contribute to the extended lifespan of compressor components. Reduced friction, effective cooling, and contaminant control can minimize wear and damage to components, leading to lower replacement costs over time. Water-lubricated compressors may have advantages in terms of component longevity, potentially reducing the frequency of component replacements.
Corrosion Prevention:
- Corrosion Protection Measures: Water-lubricated compressors require corrosion prevention measures due to the presence of water within the system. Corrosion-resistant materials, coatings, or regular maintenance procedures are necessary to prevent corrosion-related issues. The cost of implementing and maintaining corrosion protection measures should be considered in the overall maintenance costs.
Overall, the maintenance costs of water-lubricated air compressors can vary depending on factors such as the specific design and components of the compressor, the quality of the water used, the effectiveness of water treatment and filtration systems, and the implementation of corrosion prevention measures. While water-lubricated compressors may have higher initial costs and additional maintenance requirements, they can potentially offer advantages in terms of extended component lifespan, reduced component replacements, and effective lubrication. It is important to consider these factors and consult the manufacturer’s guidelines to accurately assess the maintenance costs associated with water-lubricated air compressors.
.webp)
Advantages of Using Water as a Lubricant in Air Compressors
Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:
- Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
- Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
- Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
- Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
- Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.
Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.


editor by CX 2023-10-24
China OEM Oil Free High Pressure Portable 0.8MPa Screw Air Compressor lowes air compressor
Product Description
compact type (compressor + tank + dryer)
also, screw air compressor
√ from 5.5 HP to 430 HP
√ energy saving
√ variable frequency control
√ quality guarantee
√ super long lifespan
Check our website for more: ienyao
About Airstone
More options, from us, will be better for sure.
So, let’s see if we can do business & get big win win.
√ great exclusive support from the government of ZheJiang
* Maybe you heard about ZheJiang , but ZheJiang is like Los Angeles,
while ZheJiang is like Chicago, an ideal place to run factories in much lower cost.
You don’t wanna buy big machines from Los Angeles, since that’s only for nice trip.
So, instead, you buy from Chicago.
$uccessful business trip + great travel experience
√ professional sales rep (get the ideal solutions ASAP)
√ interpreter (good communications + best chance to learn Chinese language)
√ tour guide (get to know more about Chinese, with more fun, for free)
√ friends (China is developing so fast. You need a real Chinese friend, don’t you?)
√ with classic Chinese hardworking team for 20 years
√ Our confidence to satisfy all your air needs comes from our team chemistry
Anytime Any Ways
Keep in touch
√ Let’s talk
FAQ
1. Accept OEM orders?
Highly welcome.
2. Offer spare parts?
Spare parts always available.
3. Are you a factory or trade company?
Factory.
4. Any Warranty?
One year warranty for compressor, 2 year for air end.
5. The exact address of your factory?
Please contact me if you feel like getting to see our factory.
Either can do we video call, or you come in person.
Our head office is located in 2F Xingshun Technology Park, Chongtou community,Chang’an, HangZhou City ZheJiang Province,China.
Our head factory is located in Area B,Industry Zone,Lian hua County, HangZhou City, ZheJiang Porvince, China.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | DC Power |
| Application: | Air Compressor 220V |
| Motor Protection Class: | IP23, IP54, IP55 |
| Cooling Method: | Air Cooling Mini Machine |
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-10-23
China Custom Oil Free Fix Speed Screw Air Compressor Screw Type Coupling Driven Electric Air Compressor with high quality
Product Description
High Quality Screw Air compressor
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, screw Air compressor,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements
The CHINAMFG is a volume -type gas compression machine with a volume of work volume. The compression of the gas is achieved by changes in volume, and the change of the volume is to achieve a rotation movement in the case with a pair of rotor of the compressor.
Basic structure of the screw air compressor: In the body of the compressor, a pair of intertwined spiral rotors are parallel. Usually, there is a rotor with convex teeth outside the ball, which is called yang rotor or yang screw. The rotor with concave teeth in the festival is called a pussy rotor or yin screw. Generally, the yang rotor is connected to the original motivation. Axial force. The cylindrical roller bearing at both ends of the rotor enables the rotor to achieve radial positioning and is underneath the radial force in the compressor. At both ends of the compressor body, a certain shape and size of the pores are opened respectively. One is used for inhalation, which is called the air intake; the other is used for exhaust, called the exhaust port.
Customized is accepted , Pls provide the following information to us :
1.Working Pressure : ____ Bar
2.Rated Power : _____ KW/HP
Advantages of screw air compressor :
01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage, the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are driven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.
02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.
03. Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage, with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage, high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage, controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.
4.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.
5.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.
6..High quality triple filter
1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.
High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.
Main Parameter
| Technical parameters of oil-free water-lubricated permanent magnet variable frequency screw compressor | ||||||||||||
| HYW-G | Working pressure | Exhaust volume | Power | Noise | Air outlet pipe diameter | Net weight | Dimensions(mm) | |||||
| Water lubricated series | bar | psig | (m3/min) | cfm | kW | hp | dB | kg | Length | Width | Height | |
| HYWV-7G | 7 | 102 | 0.7-1.2 | 24.7-42.4 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 |
| 8 | 116 | 0.6-1.1 | 21.2-38.8 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| 10 | 145 | 0.5-0.9 | 17.7-31.8 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| HYWV-11G | 7 | 102 | 1.0-1.6 | 35.3-56.5 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 |
| 8 | 116 | 0.9-1.5 | 31.8-53 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| 10 | 145 | 0.7-1.3 | 24.7-45.9 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| HYWV-15G | 7 | 102 | 1.1-2 | 38.8-71 | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 |
| 8 | 116 | 1-1.9 | 35.4-67.3 | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 | |
| 10 | 145 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 | |
| HYWV-15G | 7 | 102 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 |
| 8 | 116 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 | |
| 10 | 145 | 0.9-1.6 | 31.8-56.6 | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 | |
| HYWV-18.5G | 7 | 102 | 1.8-3.1 | 63.6-109.5 | 18.5 | 25 | 61 ±3 | G1″ | 600 | 1400 | 1000 | 1200 |
| 8 | 116 | 1.6-2.8 | 56.5-98.9 | 18.5 | 25 | 61 ±3 | G1″ | 600 | 1400 | 1000 | 1200 | |
| 10 | 145 | 1.5-2.5 | 53-88.3 | 18.5 | 25 | 61±3 | G1″ | 600 | 1400 | 1000 | 1200 | |
| HYWV-22G | 7 | 102 | 2.2-3.7 | 77.7-130.7 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 |
| 8 | 116 | 2.0-3.4 | 70.6-120.1 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 | |
| 10 | 145 | 1.8-3.0 | 63.6-105.9 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 | |
| HYWV-30G | 7 | 102 | 3.1-5.2 | 109.5-183.6 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 |
| 8 | 116 | 2.8-4.7 | 98.9-166 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 | |
| 10 | 145 | 2.5-4.3 | 88.3-151.9 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 | |
| HYWV-37G | 7 | 102 | 3.6-6.1 | 127.1-215.4 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 |
| 8 | 116 | 3.3-5.6 | 116.5-197.8 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 | |
| 10 | 145 | 3.0-5.0 | 105.9-176.6 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 | |
| HYWV-45G | 7 | 102 | 4.5-7.5 | 158.9-264.9 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 |
| 8 | 116 | 4.0-6.8 | 141.3-240.1 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 | |
| 10 | 145 | 3.6-6.0 | 127.1-211.9 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 | |
| HYWV-55G | 7 | 102 | 6.0-10.0 | 211.9-353.1 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 |
| 8 | 116 | 5.4-9.0 | 191-317.8 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 | |
| 10 | 145 | 4.6-7.8 | 162.4-275.5 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 | |
| HYWV-75G | 7 | 102 | 7.8-13.0 | 275.5-459.1 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 |
| 8 | 116 | 7.2-12.0 | 254.3-423.8 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 | |
| 10 | 145 | 6.0-10.0 | 211.9-353.1 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 | |
| HYWV-90G | 7 | 102 | 9.3-15.5 | 328.4-547.4 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 |
| 8 | 116 | 8.4-14.0 | 296.6-494.4 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 | |
| 10 | 145 | 7.5-12.5 | 264.9-414 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 | |
| HYWV-110G | 7 | 102 | 12.0-20.0 | 423.8-706.3 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 |
| 8 | 116 | 10.8-18.0 | 381.4-635.7 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 | |
| 10 | 145 | 9.6-16.0 | 339-565 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 | |
| HYWV-132G | 7 | 102 | 15.0-25.0 | 527.9-882.9 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 |
| 8 | 116 | 13.8-23.0 | 487.3-812.2 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 | |
| 10 | 145 | 12.0-20.0 | 423.8-706.3 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 | |
| HYWV-160G | 7 | 102 | 16.2-27.0 | 572.1-953.5 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 |
| 8 | 116 | 15.3-25.5 | 540.3-900.5 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| 10 | 145 | 14.4-24.0 | 508.5-847.6 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| HYWV-185G | 7 | 102 | 18.0-30.0 | 635.7-1059.4 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 |
| 8 | 116 | 16.8-28.0 | 593.3-988.8 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| 10 | 145 | 15.0-25.0 | 529.7-882.9 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| HYWV-200G | 7 | 102 | 21.6-36.0 | 762.8-1271.3 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 |
| 8 | 116 | 19.8-33.0 | 699.2-1165.4 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 | |
| 10 | 145 | 16.2-27.0 | 572.1-953.5 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 | |
| HYWV-250G | 7 | 102 | 25.8-43.0 | 911.1-1518.5 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 |
| 8 | 116 | 24.6-41.0 | 868.7-1447.9 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 | |
| 10 | 145 | 22.8-38.0 | 805.2-1342 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 | |
Workshop of natural gas compressor
Our products
Our Certificate : CE and ISO certification
Our exhibition for the gas compressor
Our Service for diaphragm compressor :
1.Service time : 24*7 Hours
2.Customized Service
3.Perfect pre-sale,sale,after-sales service
4.FAT
5.Onsite commissioning Service
6.18 months warranty period
FAQ :
Q1.How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q2.What’s payment term?
A: T/T, L/C, D/P, Western Union, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q3 : How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.
| After-sales Service: | 18 Months |
|---|---|
| Warranty: | 18 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?
When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:
Water Quality:
- Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
- Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.
Water Temperature:
- Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
- Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.
Water Treatment:
- Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
- Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.
By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2023-10-23
China Professional Factory 1.5HP Brushless Oil-Free Dental Portable Silent Mini High Quality China Air Compressors with 5L Tank Air Compressor Gdy-881 with Good quality
Product Description
China Brushless Air Compressors with 5L Tank, Oil Free Dental Air Compressor Portable Air Compressor, Silent Air Compressor 1.5HP Oil-less Air compressors GDY-881
Chinese air comprossors, China air compressor supplier, Air compressor factory, air compressor dealer, OEM air compressors.
Brushless Compressor Advantage
| The complete product line for wood finishing, Decorative, Furniture finishing, Painting industry, Industrial Application, construction industry, Architectural Coating, Scenic Painting, Cosmetic industries, Painting and Sculpture primer Painting jar etc.
A: Mini portable tools, it works anytime anywhere after connecting power without air charging |
Main Features:
Can use 3 pieces of F30 nail guns or 3 pieces of air screwdrivers at same time.
Main use:home decoration,nail gun,air screwdriver,tyre inflation,dust extraction
| Applicable Industries: | Home Decoration, Air Nailer and Stapler, Pneumatic tools, tyre inflation, dust extraction, etc. |
| Name: | Portable Brushless air compressor, 1.2HP oil free and slience air compressor |
| Air Flow: | 125L/min |
| Air Tank: | 5L Aluminium Air tank |
| Power Source: | AC Power |
| Mute: | Yes |
| Voltage: |
220V |
| Certification: | CE |
| Warranty: | 1 Year |
| After-sales Service Provided: | Video technical support |
| N.W: | 9.5KG |
| Lubrication Style: | OIL-Free |
| After-sales Service: | Online Service |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Position: | Vertical |
| Structure Type: | Semi-Closed Type |
| Samples: |
US$ 119/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-10-20
China Best Sales 4HP 3000W Brushless Motor LCD Screen Industrial Oil-Free Air Compressor High Quality Pressue Air Compressors with 50L Air Tank Gdy-992 air compressor lowes
Product Description
1500W Brushless Air Compressor, Portable Silent Dental Oil Free 110V or 220V with 36L Air Tank 2HP Air Compressor GDY-991
Brushless Compressor Advantage
| The complete product line for wood finishing, Decorative, Furniture finishing, Painting industry, Industrial Application, construction industry, Architectural Coating, Scenic Painting, Cosmetic industries, Painting and Sculpture primer Painting jar etc.
A: Mini portable tools, it works anytime anywhere after connecting power without air charging |
Main Features:
Use it under the circumstance of without power supply.home decoration,nail gun(instead of gas nail gun),air screwdriver,tyre inflation,dust extraction,ect.
| Applicable Industries: | Building Material Shops, Home Use, Retail, Construction works , advisor |
| Model: | Indstrial air compressor, Brushless air compressor 4HP with 50L air tank GDY-992 |
| Power Source: | AC POWER |
| Air Flow: | 500L/Min |
| Mute: | Yes |
| Air tank: | 50L Alumimum Air tank |
| Voltage: | 220V |
| Certification: | CE |
| Warranty: | 1 Year |
| After-sales Service Provided: | Video technical support |
| N.W: | 46KG |
| Lubrication Style: | OIL-FREE |
| After-sales Service: | Online Service |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 389/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?
When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:
Water Quality:
- Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
- Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.
Water Temperature:
- Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
- Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.
Water Treatment:
- Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
- Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.
By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.
.webp)
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.


editor by CX 2023-10-20
China high quality Hochey Medical Dental Equipment Silent Oil Free Dental Air Compressor 12v air compressor
Product Description
Certifications
Company Profile
We are professional manufacturer of medical equipment for 20 years.
Our products include operation lamp, operation table, ceiling pendant, hospital bed, patient monitor, medical stretcher, medical cabinet, medical trolley and vets instruments CE, FDA, TUV, ISO Certifications are available.
After Sales Service
We supply 24hours aftersales service
1.Technical support and guide
2.Free spare parts
3.Warranty:2years
Payment term:
| Payment Term | T/T | EXW | 30% TT in advance, paid the balance before shipment |
| FOB/FCA | |||
| CNF | |||
| CIF | |||
| DDU/DAP | |||
| L/C | L/C amount above 50,000 USD, we can accept L/C at sight | ||
| West Union | Amount lower than 5000usd | ||
| Delivery Time | 3~5days after receiving the payment | ||
FAQ
Q: Are you manufacturer ?
A: Yes,we have our own R&D team and sales team,We provide you one-stop service.
Q: Do you have CE,ISO13485?
A: Yes,our products are approved by CE,ISO13485
Q: Is OEM &ODM available in your factory ?
A: Yes, you just offer us necessary documents and then we will produce the products as your requirements.
Q: What is your Payment term?
A: 1.L/C at sight;
2.T/T:30% deposit by T/T,70%balance by T/T before shipment
3.Trade term:EXW, FOBZheJiang or CIF&CFR
Q: What is your Packing details?
A: 1.Wooden case or carton package,standard export packages
2.All of the productions are inspected carfully by QC before delivery.
Q: What is your Delivery time?
A: Usually, we make merchandise inventory, if we have the products in stock,The delivery time is5-10 days after receiving the deposit; If we don’t have the products in stock, we will arrange the production right now, the delivery time will be 20-30days,It depends on the quantity of order
Q: What is your Min.order?
A: There’s no minimum quantity
| Certification: | CE |
|---|---|
| Air Flow: | 118L/Min at 0bar |
| Speed: | 1400/1750 r.p.m |
| Max Pressure: | 8bar |
| Noise Level: | 52dB |
| Brand Name: | Hochey Medical |
| Samples: |
US$ 250/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Air Compressors Be Used in Cold Climates?
Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:
Freezing of Water:
- Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
- Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.
Protection and Insulation:
- Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
- Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.
Alternative Lubrication Methods:
- Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2023-10-19
China wholesaler Wholesale Heavy Duty DC12V 220W Portable Car Air Compressor with high quality
Product Description
Mini car air compressor is perfect when unexpected roadside emergency happens. It is ideal for inflating car and bicycle tires, sports ballsand other inflating jobs. Our item is very easy to use. Just plug into your car cigarette lighter for power and slip the universal adapter over anytire valve and you are ready to inflate!
Specifications:
Main material: ABS + Copper + PP
Product size: 24×8.5x19cm
Product color: black + Silver
voltage:DC12V
Current:20A
Rated power: 220W
cylinder diameter:Φ 2x30mm
Rated pressure:100psi
Outflow:45L/min
Steel sheet: 88pcs
Inflate Time:approx 2min (0psi~30psi)
Fuse: glass tube fuse
Air hose: 70CM
Power cord length:3.65m
Accessories: 600D Oxford bag, fuse, 3 accessories,pu hose,battery clamp, instruction, color box
Packing: Color box
Qty/Ctn: 1pc/box, 6pcs/ctn
Ctn size: 44x37x55.5cm
G.W/N.W: 27/26KG
Anma Group was established in HangZhou city ZHangZhoug province in 1992, subsidiary Corporation ZheJiang Anma Industrial Co., Ltd. was established in 2003 and mainly responsible for research and development of automotive supplies, domestic and foreign sales. ZheJiang branchhavea young team, full of vitality, good at learning, keep making progress.
Anma Group established its representative offices in USA, Italy and Dubai, in addition to its three factories: ZHangZhoug HangZhou factory covering an area of 258 acres, manufacturing Car interior and exterior decoration products; ZheJiang factory covering an area of 120 acres, specialized in manufacturing auto parts series products, shock absorber and fuel pump products are SAIC-GM, HAFEI AUTOMOBILE designated supporting products; HangZhou factory covering an area of 68 acres, manufacturing automotive electronics products. More than 80% of our products are for export, listed in the key supporting export enterprises.
Anma industry is professional in the manufacture and sale of automotive supplies, automotive modified parts, auto parts. Products are exported to Europe and the United States, the Middle East, Southeast Asia, more than 40 countries and regions, currently has more than 350 agents and co-clients, mainly supply include AUTOZONE, TESCO, K-MART, ALDI, BDK, SUPERCHEAP and other internationally renowned chain stores, export business is growing. 2018 the company’s total export business amount over $86 million(about RMB650million). Group companies provide customers with convenient, fast, quality service as the principle, successively set up branches in HangZhou, HangZhou, HangZhou, HangZhou, HangZhou and other domestic cities, provide first-class quality service for customer. The company headquarters has large automotive supplies stores, directly provide professional services for the local and surrounding customers.
Group companies through the stable quality, reliable reputation and customer first principle to get the support of customers. Company’s purpose: people assets, customer oriented, Integrity first! Company’s philosophy: mutual benefit, develop together! Company’s direction: develop quality products, adhere to brand strategy, regulate the sales market. If the Anma Group is a large ship, the staff gathered from all corners of the globe are the water to carry the ship, the customer is the wind to promote the Anma Group sail forward. Anma Group knows that only share fate with employees and pursue with customers, can the company ride the wind and waves continue to move forward. Good business needs good talent, good people are eager to join a good team. In the process of Anma Group’s excellent competitiveness in the field of automotive supplies, we needs strong human resources guarantee; Inthe journey of realizing personal values and promoting career, we expect to be with you.
| Cylinder Stage: | Double Stages |
|---|---|
| Pressure after Air Exhaust: | 100psi |
| MOQ: | 1000 |
| Power Supply: | DC12V/24V |
| Production Time: | 25-30 Days |
| Sample: | Available |
| Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-10-18
China high quality Highly Competitive Prices Lower Noise Fiber Laser Cutting Air Compressor air compressor for car
Product Description
Product Features
·High reliability, fewer parts and no wearing parts, so it runs reliably, has a long life, and the interval between overhauls can reach 40,000 to 80,000 hours.
·Convenient operation and maintenance. The CHINAMFG has a high degree of automation, and the operator does not need to go through long professional training, and can realize unattended operation.
·Space saving and cost saving.
·Structure Compactness, low noise.
·Build-in good quality refrigeration air dryer. ·Energy saving and high efficiency.
·Cutting gas for laser cutting machine.
Product Parameter
| Name | Air Compressor For Laser Cutting Machine |
| Model | B-15 |
| Power | 15KW/20HP |
| Rotating Speed | 2930r/min |
| Cooling Method | Air / Water |
| Working Pressure | 1.58Mpa 15.8bar |
| Voltage Frequency | 380V 50HZ |
| Air Tank Capacity | 350L |
| Size | 1900*700*1650mm |
| Weight | 560KG |
FAQ
1.Who we are?
A:We are based in ZheJiang , China, start from 2011,sell to Southeast Asia(20.00%),Eastern Europe(20.00%), WesternEurope(10.00%), North America(10.00%), Northern Europe(5.00%), Central America(5.00%),SouthAmerica(5.00%),Eastern Asia(5.00%),South Asia(5.00%),Oceania(5.00%),Southern Europe(5.00%),Africa(3.00%),MidEast(2.00%). There are total about 11-50 people in our office.
2.Which payment terms you can accept?
A: We can accept flexible payment include Bank Transfer, LC, DP, West Union, Paypal, or Combination terms as negotiation.
3.Which shipping way can you provide?
A: We can provide shipping by sea, by air , by express and etc according to customer requirements.
4.How to place order?
A: When you are ready to order, please contact us for confirm the suitable solution & plan & model. What cannot be ignored is you should provide a copy purchase order to ensure that your order is processed properly.
5.Do you have an inspection procedure for the product?
A: Yes, We have a strict inspection of product qualityand packing.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-10-18