Product Description
Product description
High -efficiency design and control, Our vortex compressor has a larger flow per kilowatt, and the single-stage compression pressure is as high as 10 barg. We pass
the following design functions to achieve such high efficiency:
Start/stop control to reduce empty load energy waste;
Dual air inlet compressor design achieves stable and efficient compression;
Reduce the overall weight of the product of the aluminum shell.
Product Feature
Modular design
Multi -road design can improve efficiency under low load conditions, which means that the number of work compressors can be accurately controlled to match the needs.
Cooling running
Use large fans to ensure low temperature operation and extend the life of the component
Microorganizer control
Manage the exhaust pressure to meet your air requirements, while measuring key operating parameters to reduce accidents.
The exhaust temperature is lower
The lower CTD value rear cooler can achieve lower exhaust temperatures, reduce the post-processing intake temperature after reducing, and reduce the post-processing investment cost after selecting a small one.
Specification
| Model | Max.pressure barg | Rated powerkW | Air flow m³/min | Connection size BSPT | Dimensions (LxWxH)mm |
Weight kg | Noise level dB(A) |
| W2i-A8 | 8 | 2.2 | 0 .24 | 1/2″ | 830×740×910 | 204 | 58 |
| W2i-A10 | 10 | 2.2 | 0.21 | 1/2″ | 204 | 58 | |
| W4i-A8 | 8 | 3.7 | 0.40 | 1/2″ | 231 | 58 | |
| W5i-A8 | 8 | 5.5 | 0.60 | 1/2″ | 240 | 59 | |
| W5i-A70 | 10 | 5.5 | 0.53 | 1/2″ | 240 | 59 | |
| W7i-A8 | 8 | 7.7 | 0.84 | 1″ | 1445×800×1000 | 438 | 62 |
| W7i-A10 | 10 | 7.7 | 0.74 | 1″ | 438 | 62 | |
| W11i-A8 | 8 | 11 | 1.20 | 1″ | 495 | 64 | |
| W11i-A10 | 10 | 11 | 1.06 | 1″ | 495 | 64 | |
| W17i-A8 | 8 | 16.5 | 1.89 | R1 | 1280×770×1480 | 515 | 61 |
| W17i-A10 | 10 | 16.5 | 1.5 | R1 | 515 | 61 | |
| W22i-A8 | 8 | 22 | 2.52 | R1 | 1330×880×1900 | 720 | 61 |
| W22i-A70 | 10 | 22 | 2.0 | R1 | 720 | 61 | |
| W33i-A8 | 8 | 33 | 3.78 | R1.5 | 1360×1030×1670 | 1000 | 63 |
| W33i-A10 | 10 | 33 | 3.0 | R1.5 | 1000 | 63 |
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Air Compressors Be Used in Cold Climates?
Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:
Freezing of Water:
- Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
- Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.
Protection and Insulation:
- Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
- Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.
Alternative Lubrication Methods:
- Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
.webp)
Are There Any Potential Water-Related Issues with These Compressors?
Yes, there are potential water-related issues that can arise with water-lubricated compressors. Here’s a detailed explanation of some of the common water-related issues associated with these compressors:
Corrosion:
- Internal Corrosion: Water-lubricated compressors are susceptible to internal corrosion due to the presence of water within the system. If the water used is not properly treated or if corrosion prevention measures are insufficient, the internal components of the compressor can corrode over time. Corrosion can lead to reduced performance, component damage, and the potential for leaks or system failures.
- External Corrosion: External components such as piping, valves, and fittings can also be affected by corrosion if exposed to water and moisture. Corrosion on these external surfaces can lead to compromised integrity, leaks, and reduced system efficiency.
Water Quality:
- Water Contaminants: The quality of the water used in water-lubricated compressors is crucial. If the water contains contaminants such as sediment, debris, oil, or chemicals, it can negatively impact the performance and reliability of the compressor. Contaminants can cause blockages, clogging, increased wear on components, reduced lubrication effectiveness, and potential damage to the compressor.
- Water Hardness: Water hardness, characterized by high mineral content, can lead to scaling and deposits within the compressor and associated components. Scaling can restrict flow, impede heat transfer, and reduce the efficiency of the compressor. It can also contribute to fouling and corrosion issues.
Water Treatment and Filtration:
- Inadequate Water Treatment: Insufficient or improper water treatment can lead to various issues. If the water is not adequately treated for contaminants, hardness, or pH levels, it can result in accelerated corrosion, scaling, fouling, and reduced lubrication effectiveness. Inadequate water treatment can also contribute to increased maintenance requirements and decreased overall compressor performance.
- Filtration System Issues: Filtration systems play a crucial role in removing contaminants from the water. However, if the filtration system is not properly maintained, filters become clogged or damaged, or if there are design or installation issues, it can lead to inadequate filtration and compromised water quality. This can result in the accumulation of contaminants, reduced lubrication performance, and potential damage to the compressor.
Water Supply and Availability:
- Insufficient Water Supply: Water-lubricated compressors rely on a consistent and reliable water supply. If the water supply is insufficient in terms of flow rate, pressure, or quality, it can impact the compressor’s operation and performance. Inadequate water supply can lead to inadequate lubrication, reduced cooling capacity, and increased wear on components.
- Water Source Availability: The availability of a suitable water source is essential for water-lubricated compressors. In certain locations or applications, accessing clean water or meeting specific water quality requirements may pose challenges. Lack of a suitable water source can limit the feasibility or effectiveness of using water-lubricated compressors.
It is important to address these potential water-related issues by implementing proper water treatment, corrosion prevention measures, regular maintenance of filtration systems, and monitoring of water quality. Adhering to manufacturer guidelines, performing regular inspections, and taking proactive measures can help mitigate these issues and ensure the reliable and efficient operation of water-lubricated compressors.
.webp)
How Do Water-Lubricated Air Compressors Compare to Oil-Lubricated Ones?
Water-lubricated air compressors and oil-lubricated air compressors have distinct differences in terms of lubrication method, performance, maintenance, and environmental impact. Here is a detailed comparison between the two:
| Water-Lubricated Air Compressors | Oil-Lubricated Air Compressors | |
|---|---|---|
| Lubrication Method | Water is used as the lubricant in water-lubricated compressors. It provides lubrication and heat dissipation. | Oil is used as the lubricant in oil-lubricated compressors. It provides lubrication, sealing, and heat dissipation. |
| Performance | Water lubrication offers efficient heat dissipation and cooling properties. It can effectively remove heat generated during compressor operation, preventing overheating and prolonging the compressor’s lifespan. Water lubrication can be suitable for applications where high heat generation is a concern. | Oil lubrication provides excellent lubrication properties, ensuring smooth operation and reduced friction. It offers good sealing capabilities, preventing air leakage. Oil-lubricated compressors are often preferred for heavy-duty applications that require high pressure and continuous operation. |
| Maintenance | Water lubrication generally requires less maintenance compared to oil lubrication. Water does not leave sticky residues or deposits, simplifying the cleaning process and reducing the frequency of lubricant changes. However, water lubrication may require additional measures to prevent corrosion and ensure proper water quality. | Oil lubrication typically requires more maintenance. Regular oil changes, filter replacements, and monitoring of oil levels are necessary. Contaminants, such as dirt or moisture, can adversely affect oil lubrication and require more frequent maintenance tasks. |
| Environmental Impact | Water lubrication is more environmentally friendly compared to oil lubrication. Water is non-toxic, biodegradable, and does not contribute to air or water pollution. It has a lower environmental impact and reduces the risk of contamination in case of leaks or spills. | Oil lubrication can have environmental implications. Oil leaks or spills can contaminate the environment, including air, soil, and water sources. Used oil disposal requires proper handling to prevent pollution. Oil-lubricated compressors also release volatile organic compounds (VOCs) into the air, contributing to air pollution. |
In summary, water-lubricated air compressors excel in efficient heat dissipation, require less maintenance, and have a lower environmental impact. On the other hand, oil-lubricated air compressors offer excellent lubrication properties and are suitable for heavy-duty applications. The choice between water and oil lubrication depends on specific requirements, operating conditions, and environmental considerations.


editor by CX 2024-02-03
China supplier CHINAMFG High Pressure 22kw Oil Free Air Compressor for Food Industry mini air compressor
Product Description
Product Description
High Efficiency & Save Energy
* High efficiency & energy saving intake valve,keep in lower unloading pressure and avoid large energy consumption when unloading.
* New oil tank design,lower pressure drop and less energy consumption.
* Shortest piping system in order to reduce the pressure drop.
* Oversized air/oil separator to bring down the pressure drop.
* Optimized cooler design,less elbow.
FAQ
Q1: Are you a manufacturer or trading company?
A1: Xihu (West Lake) Dis.in is professional screw air compressor factory located in HangZhou, China, CHINAMFG is Xihu (West Lake) Dis.in overseas market sales representative.
Q2: Xihu (West Lake) Dis.in is real member of Atlas-copco group?
A2: Yes, in 2571, Sweden Atlas-copco 100% acquired Xihu (West Lake) Dis.in.
Q3: Xihu (West Lake) Dis.in air-end from Atlas-copco?
A3: Yes, Xihu (West Lake) Dis.in LS/LSV, LOH, LSH and CS series air compressors all use Atlas Copco’s air-end.
Q4: What’s your delivery time?
A4: about 10-20days after you confirm the order, other voltage pls contact with us.
Q5: How long is your air compressor warranty?
A5: One year for the whole machine since leave our factory.
Q6: What’s the payment term?
A6:We accept T/T, LC at sight, Paypal etc.
Also we accept USD, RMB, JPY, EUR, HKD, GBP, CHF, KRW.
Q7: What’s the Min. Order requirement?
A7: 1unit
Q8: What service you can support?
A8: We offer after-sales service, custom service, production view service and one-stop service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Samples: |
US$ 5996/Unit
1 Unit(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Contribute to Energy Savings?
Water-lubricated air compressors can contribute to energy savings in several ways, making them an attractive option for industries looking to optimize their energy consumption. Here are the key ways in which water-lubricated compressors help achieve energy efficiency:
- Reduced friction and improved efficiency: Water serves as a lubricant in water-lubricated compressors, creating a thin film between moving parts to reduce friction. This reduces the energy losses due to mechanical friction and improves the overall efficiency of the compressor. Compared to oil-lubricated compressors, water-lubricated models can achieve higher mechanical efficiency, translating into energy savings over the compressor’s operational lifetime.
- Elimination of oil vapor carryover: Oil-lubricated compressors require oil filtration systems to prevent oil carryover into the compressed air stream. These filtration systems consume energy and can introduce pressure drops. In contrast, water-lubricated compressors eliminate the need for oil filtration, reducing energy consumption associated with filtration equipment and minimizing pressure losses. This leads to improved system efficiency and energy savings.
- Improved heat transfer and cooling: Water-lubricated compressors offer enhanced heat transfer capabilities compared to oil-lubricated counterparts. Water has a higher specific heat capacity and thermal conductivity, allowing for more efficient heat dissipation. This results in lower operating temperatures and reduces the energy required for cooling the compressor. By optimizing heat transfer, water-lubricated compressors can minimize energy consumption associated with cooling systems or air conditioning in compressor rooms.
- Optimized system design: Water-lubricated compressors often employ advanced system designs that further enhance energy efficiency. For example, they may incorporate variable speed drive (VSD) technology, which adjusts the compressor’s speed and power consumption based on the actual air demand. This eliminates energy waste associated with constant-speed operation and reduces energy consumption during periods of low compressed air demand. Additionally, water-lubricated compressors may feature optimized internal components and improved air flow dynamics, resulting in reduced energy losses and improved overall system efficiency.
- Heat recovery opportunities: Water-lubricated compressors can provide opportunities for heat recovery. The heat generated during compression can be captured and utilized for various heating applications within the facility, such as space heating, water heating, or process heating. By harnessing this waste heat, water-lubricated compressors contribute to energy savings by offsetting the need for additional energy sources for heating purposes.
By combining these energy-saving features, water-lubricated air compressors help optimize energy consumption, reduce operational costs, and minimize the environmental impact associated with compressed air systems. Implementing water-lubricated compressors with a comprehensive energy management strategy can result in significant energy savings and improved overall sustainability for industrial operations.
.webp)
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
.webp)
Are There Any Downsides to Using Water-Lubricated Air Compressors?
While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:
- Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
- Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
- Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
- Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
- Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.
Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.


editor by CX 2024-01-31
China supplier CHINAMFG UK Brand Medium and High Pressure Screw Air Compressor with Hot selling
Product Description
Geso UK brand Medium and High Pressure Screw Air Compressor
Product Description
Product Parameters
| Model | Air Delivery (m³/min) |
Working Pressure (Mpa) |
Power (kw) |
Dimensions(mm) | Cooling Mode |
Outlet Pipe Diameter |
Weight (kg) |
||
| (L) | (W) | (H) | |||||||
| BAEG-37A(W) | 3.5 | 1.6 | 23 | 1810 | 1200 | 1550 | air cooled or water cooled | DN25 | 1200 |
| 2 | 26 | ||||||||
| 2.5 | 30 | ||||||||
| 3 | 33 | ||||||||
| 3.5 | 35 | ||||||||
| 4 | 37 | ||||||||
| BAEG-45 A(W) | 4.5 | 1.6 | 26 | 1810 | 1200 | 1550 | air cooled or water cooled | DN25 | 1280 |
| 2 | 30 | ||||||||
| 2.5 | 33 | ||||||||
| 3 | 37 | ||||||||
| 3.5 | 40 | ||||||||
| 4 | 45 | ||||||||
| BAEG-55 A(W) | 6 | 1.6 | 33 | 2300 | 1600 | 1820 | air cooled or water cooled | DN40 | 1800 |
| 2 | 37 | ||||||||
| 2.5 | 40 | ||||||||
| 3 | 45 | ||||||||
| 3.5 | 50 | ||||||||
| 4 | 55 | ||||||||
| BAEG-75 A(W) | 8.5 | 1.6 | 52 | 2500 | 1760 | 1800 | air cooled or water cooled | DN40 | 2000 |
| 2 | 60 | ||||||||
| 2.5 | 65 | ||||||||
| 3 | 70 | ||||||||
| 3.5 | 72 | ||||||||
| 4 | 75 | ||||||||
| BAEG-90 A(W) | 10.5 | 1.6 | 59 | 3100 | 1860 | 2571 | air cooled or water cooled | DN50 | 2500 |
| 2 | 67 | ||||||||
| 2.5 | 74 | ||||||||
| 3 | 80 | ||||||||
| 3.5 | 85 | ||||||||
| 4 | 90 | ||||||||
| BAEG-110 A(W) | 12 | 1.6 | 75 | 3100 | 1860 | 2571 | air cooled or water cooled | DN50 | 3000 |
| 2 | 82 | ||||||||
| 2.5 | 90 | ||||||||
| 3 | 95 | ||||||||
| 3.5 | 105 | ||||||||
| 4 | 110 | ||||||||
| BAEG-130 A(W) | 14 | 1.6 | 80 | 3100 | 1860 | 2571 | air cooled or water cooled | DN50 | 3200 |
| 2 | 90 | ||||||||
| 2.5 | 110 | ||||||||
| 3 | 120 | ||||||||
| 3.5 | 125 | ||||||||
| 4 | 130 | ||||||||
| BAEG-150 A(W) | 16 | 1.6 | 85 | 3100 | 1860 | 2571 | air cooled or water cooled | DN50 | 3310 |
| 2 | 90 | ||||||||
| 2.5 | 110 | ||||||||
| 3 | 130 | ||||||||
| 3.5 | 140 | ||||||||
| 4 | 150 | ||||||||
| BAEG-165 W | 18 | 1.6 | 90 | 3100 | 1860 | 2571 | air cooled or water cooled | DN65 | 3600 |
| 2 | 100 | ||||||||
| 2.5 | 120 | ||||||||
| 3 | 140 | ||||||||
| 3.5 | 155 | ||||||||
| 4 | 165 | ||||||||
| BAEG-185W | 20 | 1.6 | 110 | 3500 | 2000 | 2300 | air cooled or water cooled | DN65 | 3900 |
| 2 | 120 | ||||||||
| 2.5 | 150 | ||||||||
| 3 | 165 | ||||||||
| 3.5 | 175 | ||||||||
| 4 | 185 | ||||||||
| BAEG-200W | 23 | 1.6 | 120 | 3500 | 1860 | 2160 | air cooled or water cooled | DN65 | 4200 |
| 2 | 150 | ||||||||
| 2.5 | 165 | ||||||||
| 3 | 175 | ||||||||
| 3.5 | 185 | ||||||||
| 4 | 200 | ||||||||
| BAEG-220W | 25 | 1.6 | 150 | 3500 | 1860 | 2160 | air cooled or water cooled | DN65 | 4500 |
| 2 | 165 | ||||||||
| 2.5 | 175 | ||||||||
| 3 | 185 | ||||||||
| 3.5 | 200 | ||||||||
| 4 | 220 | ||||||||
| BAEG-250W | 28 | 1.6 | 165 | 3500 | 1860 | 2160 | air cooled or water cooled | DN80 | 4800 |
| 2 | 175 | ||||||||
| 2.5 | 185 | ||||||||
| 3 | 200 | ||||||||
| 3.5 | 220 | ||||||||
| 4 | 250 | ||||||||
| BAEG-270W | 30 | 1.6 | 175 | 4500 | 2300 | 2400 | water cooled | DN80 | 5100 |
| 2 | 185 | ||||||||
| 2.5 | 200 | ||||||||
| 3 | 220 | ||||||||
| 3.5 | 250 | ||||||||
| 4 | 270 | ||||||||
| BAEG-315W | 35 | 1.6 | 200 | 4500 | 2300 | 2400 | water cooled | DN80 | 5500 |
| 2 | 220 | ||||||||
| 2.5 | 230 | ||||||||
| 3 | 270 | ||||||||
| 3.5 | 290 | ||||||||
| 4 | 315 | ||||||||
| BAEG-355W | 40 | 1.6 | 230 | 4500 | 2300 | 2400 | water cooled | DN100 | 5900 |
| 2 | 250 | ||||||||
| 2.5 | 290 | ||||||||
| 3 | 315 | ||||||||
| 3.5 | 345 | ||||||||
| 4 | 355 | ||||||||
| BAEG-405W | 45 | 1.6 | 280 | 4500 | 2300 | 2400 | water cooled | DN100 | 6200 |
| 2 | 300 | ||||||||
| 2.5 | 325 | ||||||||
| 3 | 355 | ||||||||
| 3.5 | 385 | ||||||||
| 4 | 405 | ||||||||
| BAEG-450W | 50 | 1.6 | 325 | 4500 | 2300 | 2400 | water cooled | DN150 | 6800 |
| 2 | 345 | ||||||||
| 2.5 | 365 | ||||||||
| 3 | 415 | ||||||||
| 3.5 | 435 | ||||||||
| 4 | 450 | ||||||||
| BAEG-500W | 55 | 1.6 | 385 | 5000 | 2400 | 2500 | water cooled | DN200 | 7200 |
| 2 | 415 | ||||||||
| 2.5 | 445 | ||||||||
| 3 | 465 | ||||||||
| 3.5 | 480 | ||||||||
| 4 | 500 | ||||||||
| BAEG-550W | 60 | 1.6 | 435 | 5000 | 2400 | 2500 | water cooled | DN200 | 7500 |
| 2 | 465 | ||||||||
| 2.5 | 485 | ||||||||
| 3 | 510 | ||||||||
| 3.5 | 540 | ||||||||
| 4 | 550 | ||||||||
| BAEG-600W | 65 | 1.6 | 485 | 5000 | 2400 | 2500 | water cooled | DN200 | 7900 |
| 2 | 500 | ||||||||
| 2.5 | 540 | ||||||||
| 3 | 560 | ||||||||
| 3.5 | 580 | ||||||||
| 4 | 600 | ||||||||
| BAEG-650W | 70 | 1.6 | 560 | 6000 | 2400 | 2800 | water cooled | DN250 | 8400 |
| 2 | 580 | ||||||||
| 2.5 | 590 | ||||||||
| 3 | 620 | ||||||||
| 3.5 | 640 | ||||||||
| 4 | 650 | ||||||||
| BAEG-700W | 75 | 1.6 | 600 | 6000 | 2400 | 2800 | water cooled | DN250 | 8700 |
| 2 | 630 | ||||||||
| 2.5 | 650 | ||||||||
| 3 | 660 | ||||||||
| 3.5 | 680 | ||||||||
| 4 | 700 | ||||||||
| BAEG-750W | 80 | 1.6 | 630 | 6000 | 2400 | 2800 | water cooled | DN300 | 9000 |
| 2 | 650 | ||||||||
| 2.5 | 660 | ||||||||
| 3 | 680 | ||||||||
| 3.5 | 700 | ||||||||
| 4 | 750 | ||||||||
| BAEG-800W | 85 | 1.6 | 680 | 6000 | 2400 | 2800 | water cooled | DN300 | 9500 |
| 2 | 700 | ||||||||
| 2.5 | 730 | ||||||||
| 3 | 750 | ||||||||
| 3.5 | 780 | ||||||||
| 4 | 800 | ||||||||
| BAEG-850W | 90 | 1.6 | 750 | 6000 | 2400 | 2800 | water cooled | DN300 | 9800 |
| 2 | 760 | ||||||||
| 2.5 | 790 | ||||||||
| 3 | 810 | ||||||||
| 3.5 | 830 | ||||||||
| 4 | 850 | ||||||||
| Note: BAEG-A stands for air-cooled medium press; BAEG-W stands for water-cooled medium press | |||||||||
Certifications
Packaging & Shipping
Company Profile
Geso is a global aerodynamic systems group of companies, wholly owned by BAE CHINAMFG SYSTEMS, headquartered in London, United Kingdom, and a leader in the European gases sector.
BAE Systems, the parent company of CHINAMFG Group, was founded in 1871 and is committed to the research and development and production of industrial gases. In 2002, BAE Systems set up a representative office in China, importing products from the United Kingdom to China and deploying after-sales service offices in China, and in 2018 BAE Systems established a wholly-owned company “ZheJiang Geso systems Industrial PLC and invested 11 million U.S. dollars to build an intelligent manufacturing center; dedicated to research and development, production and market development. Our products include energy-saving screw air compressors, nitrogen/oxygen generators, dry oil-free air compressors, water-lubricated oil-free air compressors, mobile air compressors, process gas compressors, medium and high-pressure screw air compressors, centrifugal air compressors, etc., which are widely utilized in various production and industrial fields, and we have set up the “ZheJiang Geso systems Industrial PLC”, “ZheJiang Geso Equipment Co.,Ltd.”, “ZheJiang Geso Energy Equipment Co.,Ltd.” 3 companies, more than 30 branches and offices throughout the country, more than 200 distributors, for all walks of life to provide high-quality intelligent energy-saving air compressor system solutions.
Geso Group inherits the advanced technology and production management mode of British BAE Systems, combined with the Chinese market demand, in order to ensure the production safety of the user, strictly follow the Group’s product development process, each new product after 40 test items and 3000 hours of durability testing, to protect the quality of the product from the source; CHINAMFG compressor adopts the high quality screw compression element developed by BAE Systems, The material is used in the construction of large ships and nuclear submarines, which ensures the service life of the air compressor. The structure of the air compressor has been developed by the design team of BAE Group headquarters, which ensures the product quality and energy-saving effect. IE5 energy-saving motors, ABB electronic control system, and three-stage frequency conversion energy-saving system are selected to reduce energy consumption and carbon dioxide emissions, which saves costs for customers and realizes small investment and big power. Meanwhile, by optimizing the design and reducing the screw compression element’s speed, our air compressors have excellent silent performance. Independent research and development of intelligent Internet of Things (IoT) technology realizes the automatic and precise supply of air compressor and nitrogen generator equipment with the actual demand amount of the user to meet the automation experience of unattended, remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless docking and evaluation feedback. Convenient interconnected management with air compressors is realized through computers, cell phones and iPads. In addition, the reasonable construction and excellent workmanship of Geso reduces unnecessary maintenance work in normal times, making maintenance more convenient and efficient.
Through years of high-speed development, Geso Group has service outlets in more than 2 hundred cities across the country, 24-hour service hotline response and Internet warranty service. Thirteen direct spare parts warehouses to provide customers with repair services in a more rapid and timely manner.
After-sales service is not only limited to the product itself, but also includes a series of complete systematic services such as compressed air system testing and optimization, intelligent air supply control for air compressors, waste heat recovery, variable frequency piping, piping, cables, and construction turnkey projects. The service engineers not only undergo strict training and assessment, but also equipped with professional testing and maintenance tools to provide customers with quality service experience and escort production.
We are committed to a lifetime free of labor charges to reduce the user’s cost of use and avoid the phenomenon of indiscriminate charges. Based on our service concept to provide customers with free training services, regular testing of the user’s energy efficiency report data and develop energy-saving programs to ensure user satisfaction and energy-saving effect. For 3 consecutive years, we have been selected as 1 of the top 10 brands by third-party organizations such as China Brand Network.
As a global aerodynamic systems group of companies, we carry the mission of innovation, quality and service. Whether it is energy saving and environmental protection, quiet performance or intelligent, always adhere to the praise of the customer experience as the center of the hard workers, Geso, to create a global CHINAMFG brand of fluid machinery, and continue to become a high-end energy-saving products industry leader.
Timeline of Geso history
BAE MARCONI ELETRONIC SYSTEMS was founded in 1871 in London, England. In the same year, we developed and produced the first reciprocating compressor and devoted ourselves to the development and production of industrial gases.
In 1910, the company’s main business expanded to multiple areas: air compressors, nitrogen/oxygen air separation equipment, integrated electronic products, the company’s core product development of single-cylinder reciprocating air compressor technology and mass production.
In 1999, the company was founded as “BAE CHINAMFG SYSTEMS LTD” and developed the first twin-screw air compressor and established the brand “GESO SYSTEMS”.
In 2000, the company developed and produced the first dry-type oil-free screw machine into the market, and it is widely used in the European medical, food and electronic industries.
In 2002, BAE Group set up a representative office in China, products from the United Kingdom after the production of original imported equipment for the Chinese market expansion, and successfully entered the Chinese aerospace and high-precision machining field market.
In 2006, a total of 26 after-sales service operation outlets were built in each provincial capital city in China, fully deploying the after-sales service system to quickly respond to and safeguard users’ experience and production safety.
In 2016, a warehousing and logistics center was established in ZheJiang , China, to ensure the timely supply of complete machines and spare parts for the Chinese market.
In 2018, the British BAE Group registered in China to establish “ZheJiang Geso systems Industrial PLC” and set up a compressor assembly and production plant in ZheJiang , China at the same time, with a registered capital of 11 million U.S. dollars.
In 2571, ZheJiang Geso systems Industrial PLC. invested and established “ZheJiang Geso Equipment Co., Ltd.” and set up a nitrogen/oxygen air separation equipment sales company in HangZhou, and in the same year, set up the second phase of the project of 300 sets of nitrogen/oxygen equipments in ZheJiang factory. The R&D and production of nitrogen/oxygen control equipment was added.
In 2571, we invested in the establishment of “ZheJiang Geso Energy Equipment Co., Ltd.” and registered some of the former offices in provincial capitals as branches to complete the separation of production and sales, and to realize the high efficiency and convenience of national market development and service.
Our Advantages
Core components: the screw compression element adopts the British R & D BAES series screw compression element , the material is used in the United Kingdom in the construction of aircraft carriers, nuclear submarine construction , fine material to ensure that the service life of the air compressor, decades still as new; high-quality S K F bearings life as high as 100,000 (100 thousand) hours; the use of imported ASCO valves and CHINAMFG solenoid valves ABB electrical components, to ensure that the system is safe and stable operation for long periods of time.
Science and technology research and development: the structure of the air compressor is developed by the design team at the headquarters of BAE Group in the UK, so that the quality and energy saving of the air compressor is satisfactory to the users. The R&D personnel of the British headquarters total 220 people, dedicated to energy-saving system research and development funds of 1.5 million U.S. dollars per year, to ensure that the equipment of energy-saving products of superiority; air separation equipment selection of the German CHINAMFG controller and touch screen, flow, purity, pressure and dew point intuitively presented in the touch screen, the process and the action screen vivid image, at a glance, leaving the DCS remote ports, the data can be transmitted to a centralized control room and cell phone terminal. The data can be transmitted to the central control room and mobile phone;
Energy saving and environmental protection: IE5 energy-saving motors, ABB electronic control system, three-level frequency conversion (motor, fan, oil pump) energy-saving system, in the selection of materials and process design, the selection of special stainless steel management connection, the design of which ensures that the internal leakage of air compressor air volume ≤ 0.571m³/min, the use of imported fibers oil and gas separation technology and oil and gas barrel precision design, the reasonable location of the pipeline with the air compressor The internal pressure difference ≤ 0.003MPa, thus reducing energy consumption, reducing carbon dioxide emissions, reducing the use of cost, small investment, big power;
Strong silent performance: through the optimization of air compressor design and air compression element performance enhancement, reduce the air compression element speed, not only to extend the service life of the air compressor, and at the same time significantly reduce the noise generated by the equipment, CHINAMFG polyester fiber polymer material developed from the sound insulation cotton and customized rubber shock absorbers, the silent equipment to bring the protection of the equipment, equipment operators and production personnel to bring the health and safety of the guarantee;
High degree of automation: The company has independently developed intelligent Internet of Things technology combined with air compressor and nitrogen generator equipment, which collects data to the cloud data processor through 2G/4G/NB-loTLoRa/Ethernet, automatically matches the accurate supply of gas with the user’s actual demand, and realizes the automation experience of unmanned, remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless docking, and evaluation feedback. It realizes unattended remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless connection, evaluation and feedback.
Convenient maintenance: reasonable construction, fine workmanship, reduce the usual unnecessary maintenance, cleaning and maintenance is more convenient, in the special design process, so that the efficiency of the maintenance staff to improve, to protect the user to use the timeliness;
One-stop service: complete product range, one-stop service for air system and gas engineering.
Qualification and certification: Geso has obtained ISO14001 environmental management system, ISO45001 health management system and ISO9001 quality management system certification, certificate 0 oil-free certification, CE EU certification, air compressor energy-efficiency certification, 3A integrity system certification and other certificates from authoritative certification organizations, which can fully guarantee the safety of users, and has been highly recognized by the market and users. We are highly recognized by the market and users.
Product Manufacturing and Acceptance Standards
The design, manufacture, installation and acceptance of screw air compressor are all based on the relevant Chinese national standards (GB) and in accordance with the requirements of the following relevant standards, norms and regulations (but not limited to), with full consideration of the impact of local environmental conditions and conditions of use.
| No. | Standard | Item |
| 1 | GB150-1998 | Steel Pressure Vessels |
| 2 | GB151-1998 | Steel Shell and Tube Heat Exchangers |
| 3 | JB/T4709 | Steel Pressure Vessel Welding Regulations |
| 4 | GB/T13278 | Technical conditions for general screw air compressors |
| 5 | GBJ78 | Noise hygiene standards for industrial enterprises |
| 6 | GB3853 | Test Methods for Pneumatic Compressor Performance for General Use |
| 7 | GB4980 | Determination of sound power level of volumetric compressor noise – Engineering method |
| 8 | JB8-82 | Product Labeling |
| 9 | ASME-PTC-9-1970 (American Society of Mechanical Engineers standards) |
Air compressor performance test standards |
| 10 | VDI-2056 (Standard of the Association of German Engineers) | Operating Vibration Test Standards |
| 11 | ISO-2151 (International Organization for Standardization standard) | Operating Noise Test Standards |
| 12 | GBJ29-90 | Compressed air station design specification |
| 13 | GB3323-87 | Radiographic and quality analysis of steel melting welded joints |
| 14 | GB4720 | Electrical Control Equipment Part I Low Voltage Electrical Control Equipment |
| 15 | JB4127 | Mechanical Seal Technical Condition 3 Main Technical Data |
After Sales Service
1 Technical services: regardless of pre-sale, sale, after-sale, as long as the user side demand equipment technical help and consulting, the company will be accurate within 24 hours to provide relevant technical information free of charge.
2 After the successful on-site start-up and commissioning acceptance, our after-sales engineers are responsible for the user’s operators to carry out routine and emergency operation training.
3 Under normal operation, maintenance and repair of the equipment, the whole unit is guaranteed for 1 year, and the air compression element is guaranteed for 5 years. During the warranty period, the non-wearable parts in the unit, damage or failure under normal use, are gratuitous compensation, free of charge replacement.
4 Regardless of the warranty period inside and outside, my company will be on schedule to the factory inspection of gas purity, flow, pressure, voltage, current, screws tightness, etc. are to do a comprehensive test in a timely manner to understand the dynamics of the unit’s operation, such as receiving the notification of the user’s equipment failure, on-call.
5 In normal operation, my company will be monthly, quarterly and regularly arranged for the user to telephone or after-sales engineers to the scene to do the equipment operation visit work, timely understanding of the unit operation dynamics, received the user equipment failure notification, the office to immediately give a telephone reply, within 1 hour to the scene to deal with. Office in the field can not deal with the situation, the ZheJiang head office will be sent directly to the scene within 24 hours to deal with after-sales engineers. In order to ensure the long-term stability of the equipment work.
6 Spare parts service: In case of damage to tubing parts, Geso will solve the problem first, then determine the responsibility, and then talk about the price, and then replace the parts after the problem is solved.
7 Free labor fee, Geso company lifetime free labor fee, reduce the user cost of use, to avoid the phenomenon of indiscriminate charging.
8 Service quality assurance: the company’s after-sales service personnel in the headquarters of the Geso after systematic training and strict examination to obtain technical certificates to ensure that each after-sales service personnel’s ability to deal with technology.
9 Service outlets: the company has after-sales service outlets in most areas of China, to ensure that the user’s problems are solved in a short period of time and there is a storage center in the after-sales service outlets to ensure the timely supply of spare parts.
10 Free training service: Geso company through the site operation training to ensure the correct use of the user operator, Geso company will be adjusted for the user personnel, re-training on-site personnel operation, each training are not charged any fees.
11 Energy-saving services: If you buy our product line, our company will regularly test the user energy efficiency report data, energy-saving data distraction and develop programs, timely energy-saving adjustments to the equipment, to protect the user’s energy savings and cost reductions.
Customer Cases
| No. | Customer‘s company name | Quantities |
| 1 | HangZhou Risen Electromechanical Co.,Ltd. | 5 units |
| 2 | HangZhou Nuoyi Laser Equipment Co.,Ltd. | 3 units |
| 3 | ZHangZhoug Luneng Renewable Resources Co.,Ltd. | 4 units |
| 4 | HangZhou Renliang Medical Machinery Equipment Co.,Ltd. | 2 units |
| 5 | ZheJiang CHINAMFG Limited Liability Company | 6 units |
| 6 | HangZhou CHINAMFG Machinery Co.,Ltd. | 1 unit |
| 7 | HangZhou CHINAMFG Trading Co.,Ltd. | 1 unit |
| 8 | ZheJiang Veneta Clothing Co.,Ltd. | 1 unit |
| 9 | ZheJiang CHINAMFG Intelligent Equipment Co.,Ltd. | 7 units |
| 10 | HangZhou CHINAMFG Construction & Installation Engineering Co.,Ltd. | 6 units |
| 11 | ZheJiang Zhongfa Environmental Protection Co.,Ltd. | 6 units |
| 12 | ZheJiang CSIC Lingang Shipbuilding Equipment Co.,Ltd. | 2 units |
| 13 | ZheJiang Wangxin Soybean Products Equipment Co.,Ltd. | 2 units |
| 14 | ZheJiang Zhi Fu Pharmaceutical Technology Partnership (Limited Partnership) | 2 units |
| 15 | Hongli Shoe Material | 5 units |
| 16 | HangZhou HangZhoun Metal Products Co.,Ltd. | 6 units |
| 17 | ZheJiang CHINAMFG Logistics Machine Co.,Ltd. | 3 units |
| 18 | ZheJiang Qiangxiong Construction Group Co.,Ltd. | 5 units |
| 19 | HangZhou CHINAMFG Logistics Machine Co.,Ltd. | 4 units |
| 20 | Hongzheng Electric Co.,Ltd. | 3 units |
| 21 | HangZhou Hengjun Technology Co.,Ltd. | 3 units |
| 22 | ZheJiang Dajing Biological Engineering Co.,Ltd. | 5 units |
| 23 | HangZhou Yi Ai Electronic Technology Co.,Ltd. | 7 units |
| 24 | ZheJiang Shengwei Bio-technology Co.,Ltd. | 2 units |
| 25 | ZheJiang Jiuding New Material Co.,Ltd. | 4 units |
| 26 | HangZhou Xitu Environmental Protection Technology Co.,Ltd. | 2 units |
| 27 | ZheJiang Taiqing Mechanical & Electrical Co.,Ltd. | 3 units |
| 28 | HangZhou Guitai Pipe Industry Co.,Ltd. | 6 units |
| 30 | HangZhou Przeszler Advanced Molding Technology Co.,Ltd. | 4 units |
| 31 | HangZhou CHINAMFG Thermal Power Co.,Ltd. | 1 unit |
| 32 | HangZhou Tellier Environmental Protection Group Co.,Ltd. | 1 unit |
| 33 | ZheJiang CHINAMFG Electric Power Design & Consulting Co.,Ltd. | 3 units |
| 34 | HangZhou Hongfengde Auto Parts Co.,Ltd. | 2 units |
| 35 | ZheJiang ZHangZhoug Mining Group Company Limited Danying Coal Mine, Gubao Township, Xiwen County | 6 units |
| 36 | ZheJiang Zhongmin Da Zheng Surface Engineering Technology Co.,Ltd. | 4 units |
| 37 | NDT Group YuHangZhou Environmental Protection Equipment Manufacturing Co.,Ltd. | 4 units |
| 38 | ZheJiang Vimet Decoration Material Technology Co.,Ltd. | 3 units |
| 39 | Kangyue Biotechnology Co.,Ltd. | 2 units |
| 40 | HangZhou Kangcai Medical Supplies Co.,Ltd. | 5 units |
| 41 | Dejuxin Energy Saving Technology (HangZhou) Co.,Ltd. | 3 units |
| 42 | HangZhou CHINAMFG Packaging Industry Co.,Ltd. | 2 units |
| 43 | HangZhou Tianlai Environmental Protection Equipment Co.,Ltd. | 6 units |
| 44 | HangZhou Yongzhengxin Hardware Machinery Factory | 3 units |
| 45 | HangZhou Industrial Park Shunhao Machinery Factory | 2 units |
| 46 | HangZhou Chemical Machinery Manufacturing Co.,Ltd. | 2 units |
| 47 | HangZhou Dehai Environmental Protection Technology Development Co.,Ltd. | 3 units |
| 48 | ZheJiang Maosheng Environment Co.,Ltd. | 1 unit |
| 49 | Air Force Engineering University Aviation Engineer Officer School | 1 unit |
| 50 | ZheJiang Tiantuo Equipment Manufacturing Co.,Ltd. | 1 unit |
| 51 | HangZhou Chemical Machinery Manufacturing Co.,Ltd. | 2 units |
| 52 | HangZhou HangZhou Clothing Co.,Ltd. | 2 units |
| 53 | HangZhou CHINAMFG Glass Co.,Ltd. | 2 units |
| 54 | HangZhou City HangZhou Xihu (West Lake) Dis.ent City Development and Management Co.,Ltd. | 2 units |
| 55 | HangZhou Sunshine CHINAMFG Chemical Engineering Co.,Ltd. | 3 units |
| 56 | HangZhou CHINAMFG Electric Appliance Manufacturing Co.,Ltd. | 4 units |
| 57 | HangZhou Xihu (West Lake) Dis. Electric Co.,Ltd. | 3 units |
| 58 | HangZhou Saida Construction Machinery Co.,Ltd. | 2 units |
| 59 | HangZhou Tellier Environmental Protection Co.,Ltd. | 1 unit |
| 60 | ZheJiang Lvjing Environmental Protection Technology Engineering Co.,Ltd. | 1 unit |
| 61 | China Construction Third Bureau Second Construction Engineering Co.,Ltd. | 1 unit |
| 62 | HangZhou Przeszler Advanced Molding Technology Co.,Ltd. | 1 unit |
| 63 | HangZhou Bochuang Environmental Protection Technology Co.,Ltd. | 2 units |
| 64 | HangZhou Hi-Tech Zone Azure Environmental Protection Technology Co.,Ltd. | 1 unit |
| 65 | ZheJiang Renze Technology Co.,Ltd. | 1 unit |
| 66 | Dejuxin Energy Saving Technology (HangZhou) Co.,Ltd. | 1 unit |
| 67 | ZheJiang Haibelian Kaihe Roofing Engineering Co.,Ltd. | 1 unit |
| 68 | ZheJiang Xihu (West Lake) Dis. Technology Co.,Ltd. | 2 units |
| 69 | HangZhou Huagong CHINAMFG Electronics Co.,Ltd. | 1 unit |
| 70 | HangZhou Oriental Environmental Engineering Research Institute Co.,Ltd. | 2 units |
| 71 | HangZhou Hi-Tech Zone Azure Environmental Protection Technology Co.,Ltd. | 2 units |
| 72 | HangZhou Bochuang Environmental Protection Technology Co.,Ltd. | 1 unit |
| 73 | ZheJiang Prime New Energy Technology Co.,Ltd. | 3 units |
| 74 | Daiko International Trading (ZheJiang ) Co.,Ltd. | 1 unit |
| 75 | ZheJiang Qiangxiong Construction Group Co.,Ltd. | 3 units |
| 76 | HangZhou Kelen Commercial Equipment Co.,Ltd. | 2 units |
| 77 | ZheJiang Bigo Electromechanical Equipment Co.,Ltd. | 2 units |
| 78 | ZHangZhoug Qier Electromechanical Technology Co.,Ltd. | 4 units |
| 79 | HangZhou Xihu (West Lake) Dis.deli Biotechnology Co.,Ltd. | 3 units |
| 80 | ZheJiang Normal University | 1 unit |
| 81 | Jumin Biotechnology Co.,Ltd. | 3 units |
| 82 | HangZhou Sanfengqiao Foodstuffs Co.,Ltd. | 3 units |
| 83 | HangZhou Jinji Strong Magnetic Co.,Ltd. | 1 unit |
| 84 | ZheZheJiang di Industrial Co.,Ltd. | 1 unit |
| 85 | Zhongtian Chaolong Technology Co.,Ltd. | 3 units |
| 86 | ZheJiang WHangZhou Pharmaceutical Co.,Ltd. | 1 unit |
| 87 | ZheJiang Hadajiang Liquor Liability Company | 1 unit |
| 88 | Jacoby Environmental Materials Technology (ZheJiang ) Co.,Ltd. | 5 units |
| 89 | HangZhou CHINAMFG Construction & Installation Engineering Co.,Ltd. | 1 unit |
| 90 | ZHangZhoug Province Mechanical and Electrical Design and Research Institute Co.,Ltd. | 1 unit |
| 91 | HangZhou CHangZhou District Hengwei Machinery Trading Co.,Ltd. | 1 unit |
| 92 | ZheJiang Jiao Tong University | 2 units |
| 93 | Chang Xihu (West Lake) Dis. (Individual) | 2 units |
| 94 | HangZhou Xihu (West Lake) Dis.wang Paper Co.,Ltd. | 3 units |
| 95 | HangZhou CHINAMFG Mould Technology Co.,Ltd. | 2 units |
| 96 | HangZhou Institute of Technology | 1 unit |
FAQ
[Q]: Are you a manufacturer or a trade company?
A : We are a factory, and we have our own factory in ZheJiang , we market our own products.
[Q]: What is your lead time?
A :Usually we will spend about 30 working days to make it.
[Q]: What is the shipping port?
A :ZheJiang ,HangZhou or HangZhou
[Q]: How can I get your quotation?
A : We will provide the quotation according to your request as soon as possible.
Before quotation, We would like to know:
1 you are end user or mid-buyer(agent, distributor,Supporting Enterprise or designing institute etc.)
2 if you are end user, what industry are you in?
3 have you bought such equipment before, what brand?
4Direction of use (where the compressor is used, what equipment it supplies)
5 What delivery volume, delivery pressure, whether frequency conversion, whether with after-treatment equipment do you want?
6 Have you ever heard about our brand:GESO
[Q]: What is your Quality assurance system?
A : ZheJiang Geso systems Industrial PLC is a wholly foreign-owned enterprise, and is also the authorized base for the production and assembly of screw compressors by BAE Systems in the UK. The company has passed ISO9001:2015 quality system certification of enterprises, ISO45001:2018 health and safety management system and ISO14001:2015 environmental management system and many other certifications. The company, from the chairman to every employee, has been trained in the world’s advanced quality system in order to obtain the induction certificate. Every year, we need to be reviewed and recognized by the certification body, and strictly in accordance with the certification system for each link in the strict day-to-day management of its products, procurement, inspection, testing, installation and commissioning of the whole machine are strictly in accordance with the ISO9001 program, to ensure that each compressor embodies the factory should be the quality and reliability of the company’s products with a high starting point, high-speed start, with a high reputation and high quality! The company’s products have a high starting point and high speed to start, with high reputation and high quality to win the trust of users from all walks of life. The company’s products to implement the 3 bags, 3 bags for 1 year. The company shall bear the replacement cost of parts, repair cost and transportation and miscellaneous cost of equipment round trip (except perishable parts such as 3 filters, lubricating oil and external auto-drainer) during the warranty period of the supplied equipments. If the rework or equipment damage is caused by our company’s drawings, data, technical documents errors or technical service personnel on-site guidance, our company is immediately responsible for free repair or replacement.
[Q]: What does your brand “GESO” mean?
A : Gas: Description of Geso products characterized as equipment for applications in the field of all types of gas processes.
Efficient: Design, innovation and development of a full range of products for the purpose of energy saving.
Stability: to ensure the user’s production safety and stability as a prerequisite requirement
OPTIMUM : to build a world-renowned brand of fluid machinery, and continue to become the industry leader in high-end energy-saving products.
Systems : the business philosophy centered on the praise of service customer experience. CHINAMFG provides compressors, after-treatment, pressure vessels, installation piping, intelligent cloud, air separation equipment and other series of products, providing users with one-stop product services; from pre-sales program design, installation of equipment during the sale, after-sales maintenance to create a full-system operation and service team.
Air Compressor Frequently Asked Questions
The following items are some of the most frequently asked air compressor questions and answers, courtesy of CHINAMFG systems.
How Does an Air Compressor Work?
An air compressor works by using electric power to create pressurized air that can then be released and converted to usable power for use in a number of applications, depending on your specific needs. It performs this by compressing air within a chamber by means of a piston, rotary vane or screw or scroll element and then releasing this pressurized air into your downstream receivers and distribution piping system.
How Do You Use an Air Compressor?
Follow these simple steps to use your air compressor safely and efficiently:
1. Check the oil level: For oil-filled compressors, check that the oil level reaches about ⅔ of the way up the dipstick.
2. Prepare the compressor: Attach hoses, plug into a grounded outlet, check the drain valve and flip the power switch.
3. Adjust the pressure regulator: Set the pressure to match the level your air tool requires.
4. Operate your device: The tank will refill as you use your tool.
5. Complete proper cleanup: Turn off the compressor to drain the pressure and open the air tank drain valve to clear out condensation.
What Does an Air Compressor Do?
Air compressors provide compressed air for applications such as filling gas cylinders with high-pressure clean air, providing pressurized clean air for operating pneumatic CHINAMFG systems or tools, filling tires and a wide variety of other applications across industries like automotive, medical, food and beverage, petroleum, pharmaceutical and more.
What Do You Use an Air Compressor For?
Air compressors can be used for many personal and professional applications. A few at-home uses include:
· Blowing up balloons
· Pumping up tires for bikes and vehicles
· Inflating pool accessories and air mattresses
· Refilling deflated sports equipment
· Pressure washing
· Powering tools for sanding, polishing and other types of crafting
· Painting with an airbrush or sprayer
Many businesses rely on air compressors to accomplish work safely and efficiently. Some industries that use compressors include:
· Agriculture
· Manufacturing
· Automobiles
· Pharmaceutical
· Food and beverage
· Dental and medical
· Construction
How Much Is an Air Compressor?
Air compressors can cost anywhere from $125 to $2,000. The price of an air compressor depends on many factors, including:
· PSI and CFM: Pounds per square inch (PSI) measures how much force an air compressor has, while cubic feet per minute (CFM) measures the flow.
· Duty cycle: This percentage indicates how long the compressor can provide air during a cycle.
· Life span: Compressors can last between 15,000 to 60,000 hours, depending on their use and size.
The type of compressor you need and how much you will pay for it will depend on your industry or personal needs.
How Often Do I Need to Change the Oil in My Air Compressor?
If you have a lubricated reciprocating, rotary screw or rotary vane air compressor, you’ll need to change the oil from time to time to keep it working properly. The recommended schedule is generally 3 months, subject to the manufacturer’s recommendation. For a rotary screw compressor, you’ll want to change the oil every 4,000 to 8,000 hours depending on the type of oil employed.
Do Air Compressors Run Out of Air?
If you run a regular duty cycle with an appropriate load, you will always have the air you need. As you use your tool, the pressure switch will detect the drop in pressure and start the compressor. Once the tank has refilled to the preselected pressure point, the compressor will shut off. The pressure switch will manage this function throughout the time you’re using an air tool.
If you attach a tool with an air requirement that is too great for the tank, you run the risk of emptying your air tank and having to wait for the compressor to refill it to a usable level. Always check your air compressor’s capabilities and your tool’s required pressure before connecting them.
Do I Need an Air Dryer in Addition to My Air Compressor?
It’s often a good value for you to add an air dryer to your air compressor system, as your air compressor can put a great deal of water into the compressed air system. Your air dryer could potentially remove gallons of water each day.
How Do I Control Contaminants in My Compressed Air System?
It’s important to have an effective air filtration system to keep your compressed air clean. CHINAMFG systems can provide you with all the air filters you need to help keep your compressed air clean.
How Often Do I Need to Replace My Air Intake Filter?
Air compressors with air intake filters need to be cleaned weekly. If your filter has built up so much debris that you can’t get it completely clean, or the filter is torn, you should replace it right away.
How Do I Control the Dew Point of My Compressed Air System?
If you’re worried about hitting the dew point, a quality air dryer should be the solution.
What Is the Correct Voltage for My Air Compressor?
Usually, 110 volts is sufficient for a small compressor. Larger compressors may take as much as 460 volts.
How Do I Drain the Water From My Tank?
You can drain your tank water manually or purchase an automatic drain valve to remove the water automatically. If water is becoming a big problem, consider investing in a more appropriately-sized air dryer.
What Is the Right Type of Hose for My Air Compressor?
It depends on the air compressor, but typically, they take a 1/4″ or 3/8″ hose. Your Geso systems professional can help you match the right hose to your compressor.
Do I Need a Reciprocating Compressor or a Rotary Screw Compressor?
For most applications, a reciprocating compressor is sufficient. If you need a compressor that runs continuously day and night, you need a rotary screw compressor.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Screw |
| Samples: |
US$ 2100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-01-22
China Hot selling CHINAMFG 2.2kw 3.7kw 5.5kw 15kw 22kw Silent Oil Free Dentist Medical Scroll Screw Air Compressor supplier
Product Description
Product Parameters
ZAKF 22KW 30HP silent oil free scroll screw air compressor
|
Model |
YYW-XP22A-8 |
|
Power(KW) |
22KW |
|
Capacity (m³/min) |
2.4 |
|
Master format |
5.5*4 |
|
Number of Master |
4 |
|
Abnormal voltage plus 800 * number of Master |
3200 |
|
Pressure |
8 |
Product Description
Company Profile
Certification and Exhibitions
Packing & shipping
After Sales Service
Pre-Sales Service
* Inquiry and consulting support.
* Sample testing support.
* View our Factory.
* Supply of accessorise
* Information supply
After-Sales Service
* Training how to instal the machine, training how to use the machine.
* Engineers available to service machinery overseas.
* Machine maintenance
* Proposal of improvement
Customer Evaluation
FAQ & Contact Us
Q:Are you a factory or trade company?
A:We are a factory,we provide screw Air compressors,Air receivers,UltraFilters,Dryers,Electronic condensate drains and Oil/Water
separators.
Q:How to pay?
A:T/T and L/C,Western Union,Paypal.
Q:How about your monthly production?
A:8000sets/month.
Q: what’s the advantages of your company?
A:1. I have factory,the quality can be control. 2. the price is good 3. I have professional team 4. we can be your oem factory 5.
Excellent after service. 6. we have inverter compressor, it can save energy.
Q:How to package&delivery?
A:we will use standard wooden case to package and shipped after finishing payment.
Q:How many services you will provide about air compressor?
A:we will provie perfect before-sales and after-sales for each machine.
CONTACT US
Sales Manager:Grace
HangZhou City CHINAMFG Compressor Parts
Co.,LTD HONGKONG CHINAMFG INDUSTRY LIMITED
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Machine Maintenance |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Oil-free |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2024-01-18
China supplier Gd-120/8-220 Large Oil-Free Oxygen Booster Air-Cooled Nitrogen Biogas Diaphragm Compressor portable air compressor
Product Description
HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.
Diaphragm compressor is a reciprocating compressor that compresses and transports gas by the reciprocating motion of the diaphragm in the cylinder. The diaphragm is clamped by 2 restraint plates along the periphery and forms a cylinder. The diaphragm is driven by hydraulic force to move back and forth in the cylinder, so as to achieve the compression and transportation of gas. With a large compression ratio, wide pressure range, good sealing characteristics. Since its gas chamber does not need any lubrication, thus ensuring the purity of compressed gas, especially suitable for flammable, explosive, toxic and harmful, high-purity gas compression, transportation and bottling.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 18 Months |
|---|---|
| Warranty: | 18 Months |
| Principle: | Reciprocating Compressor |
| Application: | High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Mute: | Mute |
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Impact Compressed Air Quality?
Water-lubricated air compressors can have an impact on the quality of the compressed air they produce. Here’s a detailed explanation of how water-lubricated air compressors can affect compressed air quality:
Moisture Content:
- Condensation: Water-lubricated compressors introduce moisture into the compressed air system. During the compression process, as the air cools downstream, moisture can condense and accumulate. This moisture can lead to issues such as corrosion, rust, and contamination of downstream equipment or processes.
- Water Carryover: If the compressor’s water separation mechanisms are not efficient or if there are malfunctions in the water removal systems, water droplets or mist may carry over into the compressed air. This can negatively impact the quality of the compressed air and introduce moisture-related issues downstream.
Contamination:
- Oil Contamination: In some water-lubricated compressors, there is a potential for oil to mix with the water used for lubrication. If oil and water emulsify or if there are leaks in the compressor system, oil contamination may occur. Oil-contaminated compressed air can have adverse effects on downstream processes, equipment, and products. It can lead to contamination, reduced performance of pneumatic components, and potential health and safety concerns.
- Particulate Contamination: Water-lubricated compressors can introduce particulate matter, such as sediment, debris, or rust, into the compressed air system. This can occur if the water supply or water treatment systems are not adequately filtered or maintained. Particulate contamination can clog or damage pneumatic equipment, affect product quality, and cause operational issues in downstream applications.
Preventive Measures:
- Water Separation: Water-lubricated compressors employ various water separation mechanisms to remove moisture from the compressed air. This includes moisture separators, water traps, or coalescing filters that are specifically designed to capture and remove water droplets or mist from the compressed air stream. Regular maintenance and inspection of these separation systems are necessary to ensure their proper functioning.
- Air Treatment: Additional air treatment components, such as air dryers or desiccant systems, can be installed downstream of water-lubricated compressors to further reduce moisture content in the compressed air. These systems help to remove moisture that may have carried over from the compressor and ensure that the compressed air meets the required dryness standards for specific applications.
- Proper Maintenance: Regular maintenance of water-lubricated compressors is essential to minimize the potential impact on compressed air quality. This includes routine inspection, cleaning, and replacement of filters, lubrication systems, and water separation components. Addressing any leaks, malfunctioning components, or system issues promptly can help maintain the integrity of the compressed air and prevent contamination or excessive moisture levels.
By implementing appropriate water separation mechanisms, air treatment systems, and maintenance practices, the impact of water-lubricated air compressors on compressed air quality can be minimized. It is important to consider the specific requirements of the application and follow industry standards and guidelines to ensure the desired compressed air quality is achieved.
.webp)
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2024-01-17
China Best Sales China Supplier Dental Oil Free Low Noise Air Compressor air compressor lowes
Product Description
Electric Silent Oilless Air Compressor keep Slient Work Enviroment
| Quick Details | TY-1EW-32 | ||
| Applicable Industries: | Medical & Dental | Showroom Location: | None |
| Condition: | New | Type: | PISTON |
| Configuration: | PORTABLE | Power Source: | AC POWER |
| Lubrication Style: | Oil-free | Mute: | Yes |
| Power Source: | AC POWER | Brand Name: | Toye |
| Lubrication Style: | Oil-free | Dimension(L*W*H): | 44X44X67CM |
| Place of Origin: | HangZhou ,China | Warranty: | 2 Years |
| Voltage: | 220V/110V | Air capacity: | 105L/min |
| Weight: | 30KGS | Video outgoing-inspection: | Provided |
| Working Pressure: | 0.8 bar | Warranty of core components: | 2 years |
| Machinery Test Report: | Provided | Gas Type: | Natural Gas |
| Marketing Type: | New products 2571 | Usage: | |
| Core Components: | Pressure vessel, Motor, Pump | VDC: | 220V/110V |
| Product name: | Air compressor | Local Service Location: | NONE |
| Air delivery: | 32L | Certification | CE,ISO13485 |
| After Warranty Service: | Online and Offline services | Package | Carton/wooden box |
| After sales Service Provided: | Online and Offline services | Supply Ability | 1000PCS/month |
OIL FREE: Compare to lubrication compressor, one-step operation, do not need any lubricated oil, and harmless to the human body, more health and hygiene.
SUPER SILENT: Noise level lower than 60dB, ensure have friendly-enviromently treating room.
MULTI-PHASE FILTERATION: Advanced branded water filter to ensure extremely green and dry air.
EASY USING: One-step operation, when connecting with power, air compressor work automatic, also equipped with thermal prevention deviceto avoid over heating to protect motors.
GREEN AIR: Air tank have internal oxidation-proofed precess,avoaid corrosion and supply hygiene air to the equipments.
ENERGY SAVING: High quality pressure switch used to control the power of air compressor automatically stop when reach max pressure, and restart at mix pressure.
LOW VIBRATION: Robber foot reduce vibration and keep the air compressor away from wet place.
HIGH DURABILITY: long life air pump up to 3,000 hours working time.
SIMPLE OPERATION: No need to lubricate oil.
Applications:
Dental clinic, medical and health, SPA, Tattoo house, scientific research, electronic, chemical, Laboratory, spraying, Industrial, Printing etc.
More Design
Certifications
Company Profile
Exhibition
Production Workshop
Packaging & Shipping
Client Feedback
FAQ
1.Q:Are you a factory or trading company?
A:We are factory.we produce dental chair, dental intra oral camera and dental air compressor, and it’s approved CE certificated.
2.Q:Where is your factory located? How can I visit there?
A:Our factory is located in HangZhou City, ZheJiang Province, China, near HangZhou.You can fly to Xihu (West Lake) Dis. airport ,you can take tax or metro to HangZhou directly.All our clients, from home or abroad, are warmly welcome to visit us!
3.Q: How can I get Fob or C&F price?
A: Normally production time of products is from 2 week to 1 month depending on the quantity ordered. If you are sourcing a product, our representative will give you specific information regarding the lead time. If you need a rush order, contact our representatives to discuss your specific needs.
4.Q: How long is my warranty and what does it cover?
A:Detnal unit chair carry the full 1 year manufacturer warranty. Each warranty period begins at the date of delivery date and ends after 1 year.The warranty varies by option items and manufacturer All warranty claims will be void due to neglect, lack of maintenance, and/or improper handling.
5.How can I get the after sevice? How can I get the spare part after 1 year warranty?
A: We welcome your chats online (Chat or leave message: After service) or e-mail to us regarding any technical or related questions that you may have. And we will offer some free sparts for container order. We gurantee keep dental chair units spare parts offer.
If you want to know more information about our products welcome to contact us in any time, And welcome to our company!
Website: toyedent
Add: 5/F Zhisheng BLDG.,East Keji Rd.,Shishan Town,Xihu (West Lake) Dis. District, HangZhou
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Interface: | 1 |
|---|---|
| Teeth Whitening Method: | Na |
| Applicable Departments: | Orthodontic Department |
| Certification: | ISO, CE |
| Type: | Piston |
| Material: | Metal |
| Samples: |
US$ 165/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2024-01-15
China Custom LK-B13/B14 CHINAMFG Dental Central Air System/Powerful Dental Air Compressor supplier
Product Description
LK-B13/B14 CHINAMFG Dental Central Air System/Powerful Dental Air Compressor
Dynamic Dental Central Air System
It adopts oil-free piston type air motor, intelligent, digital control system to make all the motors working regularly to extend service life. It has precision filter and efficient air dryer to provide the clean and dry air for dentistry.
Small volume, stable, powerful.
Modularization design by professional team.
Meet all space from clinic to hospital request.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Certification: | ISO, CE, FDA |
|---|---|
| Type: | Dental Air Compressor |
| Material: | Metal |
| Brand: | Zzlinker |
| Model: | Dental Central Air System |
| Name: | Dental Air Compressor |
| Samples: |
US$ 280/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-01-10
China OEM CHINAMFG Official Stationary Diesel Screw Air Compressor for Mine supplier
Product Description
XCMG Official Stationary Diesel Screw Air Compressor
Product Description
Noise enclosure
It is designed into fully-closed mute box, in which sound-absorbing sponge are attached for effective absorption of noise,thereby making the noise 3-5dB(A) lower than that made by the compressors of the same kind.It is reasonably structured overall and very easy to maintain and repair.
Control Panel
Intelligent microcomputer-based control technology can monitor and control in all aspects the complete machine following your instructions. Remote control realizes unattended operation, and the user-friendly human-machine interface displays instructions and parameters in written form. Also, it can function to self diagnose faults,give warning and automatically regulate the capacity.
Motor
First-class motors are adopted, with the level of protection being IP54 and insulation level being F.overall and very easy to maintain and repair.
Cooler
It is designed for low temperature difference to increase heat exchange area, and ideal to be applied to high-temperature and high-humidity operating environment.
Configuration characteristics
1. A precisely-made central bracket is used to keep the motor aligned permanently with the bare compressor
2. A highly resilient coupling is adopted to make the compressor operate smoothly, and the elastomer is long in useful life
3. The exhaust pipe adopts double-layer bellows, and the oil circuit adopts specially-made temperature-resistant 125º C high-pressure hose
4. For the extremely high temperature condition in some districts, the large-area plate heat exchange and high-efficiency water chiller are used
5. High-quality shaft coupling elastic body can buffer and compensate for the imbalanced moment of operation.
Product Parameters
|
Model |
Air flow |
pressure |
Motor power |
Caliber |
Noise |
Cooling air volume |
Cooling water |
|
m ³/min |
MPa |
kW |
dB(A) |
m ³/min |
L/min |
||
|
XA-7GA |
1.35 |
0.7 |
7.5 |
G1/2 |
62±2 |
32.5 |
|
|
1.25 |
0.8 |
||||||
|
1.01 |
1 |
||||||
|
0.9 |
1.25 |
||||||
|
XA-11GA |
1.8 |
0.7 |
11 |
G3/4 |
63±2 |
50 |
|
|
1.78 |
0.8 |
||||||
|
1.55 |
1 |
||||||
|
1.3 |
1.25 |
||||||
|
XA-15GA |
2.5 |
0.7 |
15 |
G3/4 |
63±2 |
50 |
|
|
2.4 |
0.8 |
||||||
|
2.1 |
1 |
||||||
|
1.8 |
1.25 |
||||||
|
XA-18GA |
3.1 |
0.7 |
18.5 |
G1 |
64±2 |
100 |
|
|
3 |
0.8 |
||||||
|
2.7 |
1 |
||||||
|
2.3 |
1.25 |
||||||
|
XA-22GA/W |
3.8 |
0.7 |
22 |
G1 |
64±2 |
110 |
14.5 |
|
3.7 |
0.8 |
||||||
|
3.2 |
1 |
||||||
|
2.8 |
1.25 |
||||||
|
XA-30GA/W |
5.4 |
0.7 |
30 |
G1 |
65±2 |
145 |
20 |
|
5.25 |
0.8 |
||||||
|
4.5 |
1 |
||||||
|
3.9 |
1.25 |
||||||
|
XA-37GA/W |
6.6 |
0.7 |
37 |
G1 ½ |
65±2 |
145 |
25 |
|
6.6 |
0.8 |
||||||
|
5.9 |
1 |
||||||
|
4.8 |
1.25 |
||||||
|
XA-45GA/W |
8.4 |
0.7 |
45 |
G1 ½ |
66±2 |
185 |
30 |
|
8 |
0.8 |
||||||
|
7.4 |
1 |
||||||
|
6.4 |
1.25 |
||||||
|
XA-55GA/W |
10.8 |
0.7 |
55 |
G2 |
68±2 |
220 |
39.9 |
|
10 |
0.8 |
||||||
|
9.1 |
1 |
||||||
|
8 |
1.25 |
||||||
|
XA-75GA/W |
13.8 |
0.7 |
75 |
G2 |
72±2 |
250 |
51 |
|
13 |
0.8 |
||||||
|
11.8 |
1 |
||||||
|
10.3 |
1.25 |
||||||
|
XA-90GA/W |
17.1 |
0.7 |
90 |
G2 |
72±2 |
270 |
61 |
|
17 |
0.8 |
||||||
|
15.2 |
1 |
||||||
|
12.5 |
1.25 |
||||||
|
XA-110GA/W |
21.2 |
0.7 |
110 |
G2 1/2 |
75±2 |
420 |
79 |
|
20 |
0.8 |
||||||
|
17.1 |
1 |
||||||
|
15.4 |
1.25 |
||||||
|
XA-132GA/W |
25 |
0.7 |
132 |
G2 1/2 |
75±2 |
460 |
91 |
|
24.3 |
0.8 |
||||||
|
21 |
1 |
||||||
|
17.5 |
1.25 |
||||||
|
XA-160GA/W |
30.5 |
0.7 |
160 |
G2 1/2 |
75±2 |
510 |
105 |
|
29.2 |
0.8 |
||||||
|
26.9 |
1 |
||||||
|
22.5 |
1.25 |
||||||
|
XA-185GA/W |
32.9 |
0.7 |
185 |
G2 1/2 |
75±2 |
510 |
123 |
|
31.9 |
0.8 |
||||||
|
29.1 |
1 |
||||||
|
25.5 |
1.25 |
||||||
|
XA-220GA/W |
37 |
0.7 |
220 |
DN80 |
75±2 |
710 |
144 |
|
36.3 |
0.8 |
||||||
|
31.63 |
1 |
||||||
|
28.55 |
1.25 |
||||||
|
XA-250GA/W |
45.8 |
0.7 |
250 |
DN80 |
75±2 |
800 |
163 |
|
44 |
0.8 |
||||||
|
39 |
1 |
||||||
|
35.5 |
1.25 |
Product Picture
Company Profile
FAQ
1: What kind terms of payment can be accepted?
A: For terms of payment, L/C, T/T, D/A, D/P, Western Union (can be) could accepted.
2: What certificates are available in Machinery?
A: For the certificate, we have CE, ISO, GOST, EPA(USA)CCC.
3: What about the delivery time?
A: 7-30 days after receiving the deposit.
4: What about the warranty time?
A: 12 months after shipment or 2000 working hours, whichever occuts first.
5. What about the Minimum Order Quantity?
A: The MOQ is 1 PCS.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Overseas Service Center Available |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-01-04
China Hot selling Dry Type Oil Free Screw Air Compressor for Bottle Blowing Industrial supplier
Product Description
Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages
1.Clean air 1, China
Our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Are the Key Components of a Water-Lubrication System in Compressors?
A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:
Water Supply:
- Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
- Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.
Lubrication System:
- Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
- Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
- Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
- Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
- Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.
Control and Monitoring:
- Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
- Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
- Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.
Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.
.webp)
Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?
When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:
Water Quality:
- Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
- Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.
Water Temperature:
- Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
- Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.
Water Treatment:
- Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
- Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.
By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2024-01-02
China supplier 13bar 110kw 150HP Diesel Engine Portable Screw Air-Compressor Hg400m-13 for Mining Quarry lowes air compressor
Product Description
Product Description
This series of engine adopts the six-cylinder diesel engine produced by CHINAMFG cu mmins, and is equipped with CHINAMFG reversing head, which greatly improves its reliability and economy. Excellent comprehensive performance, widely used in hydropower, railways, ship repair, mines, highways, shotcrete, oil and gas fields, Wells drilling, municipal construction, cable laying and other related fields.
1. Status monitoring
Operating interface according to the main and secondary separated instrument design, the interface is more concise,clear, the user is more handy for the operation.
2. European CHINAMFG design
European CHINAMFG design, beautiful appearance, convenient maintenance, repair.
3. Low transportation cost
Small size, light weight, low noise; It is light in shape and convenient for transportation, with less floor space, and can be moved in and out freely in narrow working conditions to reduce transportation costs.
4. Large-capacity oil tank
Equipped with large capacity oil tank, can work more than 8 hours continuously, to meet the needs of a shift.
Product Parameters
Detailed Photos
After Sales Service
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in our partner factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks.
6.All kinds of technical documents in different languages.
FAQ
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.
Q4: What about the voltage of products??Can they be customized?
A4: Yes, of course. The voltage can be customized according to your equirement.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 20-30 days.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
Q7 Which trade term can you accept?
A7: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Installation Type: | Movable Type |
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-29