Tag Archives: air compressor supplier

China supplier 15-400kw Direct Driven Industrial Silent/Mute Medical Dry Oil Free Screw Air Compressor arb air compressor

Product Description

15-400kw Direct Driven  Industrial Silent/Mute Medical Dry Oil Free Screw Air Compressor 

1.About GREAT: 

GREAT air compressor, as 1 leading manufacture &exporter for screw air compressor in China. Founded in 1957 years, coving 20000 square meters. With over 200 skilled employees and 20 R&D research engineers, we focus on the research, production, sales and service for screw air compressor and relative products .Our goal is to provide the high grade and most energy saving compressor for the world customer.
    Our main products including screw air compressor, air dryer, air tanker, line filters and other relative compressed air products etc. we passed ISO and CE certificate. Germany standard and 60 years industry experience help us win the domestic and foreign customers praise .From 2016 opened to the world, now exporting to more than 100 countries. We have established a huge sales and service network at home and abroad. We can provide satisfied service such as consulting, training, repairing, spare parts suppling, etc.
 “GREAT” as famous china brand for air compressor, our mission is to become a world-famous high-end brand and service for oversea customers. Welcome more oversea agents, dealers and distributors to join us. We also can do the OEM service for big customers
Accoring to the busniness tenet of “high efficiency,engeryg saving, realiability and durable ” GREAT provide you with high-quality products and timely service as well as customized compressed air system solutions.

2.  performance characteristics for water- lubricated oil free screw air compressor :

3. Advantages for oil-free water lubrication screw air compressor:

1). No oil, cleaner
The whole air compressor does not need to add any lubricating oil inside to make the outlet gas cleaner.
2). Stainless steel, safer
The parts in contact with compressed air in the system are made of 304 or 316 stainless steel to prevent pollution in the compression process and ensure the safety of gas.
3). low speed, high efficiency, more environmental protection
The main engine and motor are connected by elastic coupling, and there is no gearbox and other variable speed device, which makes the main engine and motor rotate at the same speed, reducing noise and vibration less.
The compression temperature of the host machine is about 50ºC, close to isothermal compression, effectively reducing energy consumption.
Using water as a lubricant, the entire life cycle of the equipment does not produce any waste oil discharge.

4).Simple structure and low maintenance cost

The machine structure is simple, easy to maintain, only need to replace the air rate and water filter element, no lubricating oil, greatly reduce the maintenance cost.

4. Details for GREAT oil free water lubricated screw air compressor :

5.Technical Parameters for  oil-free water lubrication screw air compressor:

Model Max work pressure (Mpa) Flow air capacity (m³/min) Motor power  (kw) Noise
(dB)
Pipe dia. Of cooling water Cooling water volume
(T/H)
Lubricate water volume Dimension LXWXH
(mm)
Weight
(kg)
Air outlet
TKW-5VA/W 0.8 0.3~0.78 5.5 58 3/4″ 1.5 10 800x800x1100 460 3/4″
1.0 0.2~0.65
TKW-7VA/W 0.8 0.35~1.17 7.5 58 3/4″ 1.5 10 800x800x1100 510 3/4″
1.0 0.3~1.05
1.25 0.24~0.81
TKW-11VA/W 0.8 0.54~1.65 11 60 1″ 2.5 26 1200x760x1300 620 3/4″
1.0 0.45~1.42
1.25 0.35~1.10
TKW-15VA/W 0.8 0.75~2.43 15 63 1″ 3.5 26 1200x760x1300 670 3/4″
1.0 0.65~2.17
1.25 0.6~1.80
TKW-18VA/W 0.8 0.9~3.13 18.5 65 1″ 4 30 1400x900x1450 730 1″
1.0 0.9~2.82
1.25 0.6~2.05
TKW-22VA/W 0.8 1.1~3.52 22 65 1″ 5 30 1400x900x1450 780 1″
1.0 0.97~3.21
1.25 0.85~2.78
TKW-30VA/W 0.8 1.55~5.12 30 67 1 1/2″ 7 40 1550X1150X1500(A)
1500X1150X1300(W)
1150 1 1/4″
1.0 1.255~4.43
1.25 1.1~3.63
TKW-37VA/W 0.8 1.91~6.30 37 67 1 1/2″ 9 40 1550X1150X1500(A)
1500X1150X1300(W)
1200 1 1/4″
1.0 1.60~5.33
1.25 1.42~4.77
TKW-45VW 0.8 2.5~7.4 45 68 1 1/2″ 10 90 1800x1300x1750(A)
1800x1300x1680(W)
1490 2″
1.0 1.91~6.30
1.25 1.70~5.56
TKW-55VW 0.8 3.0~9.76 55 70 1 1/2″ 12 100 1980x1300x1750(A)
1800x1300x1680(W)
1570 2″
1.0 2.60~8.55
1.25 2.30~7.67
TKW-75VW 0.8 3.95~13.00 75 73 1 1/2″ 18 100 1800x1300x1750(W) 1750 2″
1.0 3.4~11.50
1.25 3.0~9.70
TKW-90VW 0.8 5.0~14.8 90 73 1 1 /2″ 20 120 2200x1550x1800 2450 2 1/2″
1.0 4.30~13.90
1.25 3.72~12.60
TKW-110VW 0.8 6.0~19.85 110 78 2″ 24 120 2200x1550x1800 2580 2 1/2″

 

1.0 5.0~16.66
1.25 4.65~15.56
TKW-132VW 0.8 6.75~23.10 132 78 2″ 30 120 2200x1550X1800 2700 2 1/2″
1.0 6.0~19.97
1.25 5.07~16.90
TKW-160VW 0.8 8.5~28.11 160 80 3″ 35 160 3000X1800X2100 3900 3″
1.0 7.6~25.45
1.25 6.7~22.52
TKW-185VW 0.8 10~33.97 185 80 3″ 38 160 3000X1800X2100 4050 3″
1.0 8.72~29.00
1.25 7.75~25.21
TKW-200VW 0.8 11.2~36.75 200 80 4″ 42 200 3100X1850X2100 4200 4″
1.0 9.68~32.78
1.25 9.2~29.24
TKW-220VW 0.8 12.2~39.67 220 80 4″ 47 200 3100X1850X2100 4400 4″
1.0 11.2~36.75
1.25 9.0~29.63
TKW-250VW 0.8 13.5~43.5 250 80 4″ 53 200 3100X1850X2100 4800 4″
1.0 12.2~39.30
1.25 10.2~34

 

4.Application :

6.Certification :

7. Packing and shipping :

8. FAQ Industrial Lubricated High Pressure Screw Air Compressor
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: Warranty terms of your machine? 
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines? 
A3: Yes, of course.
Q4: How long will you take to arrange production? 
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders? 
A5: Yes, with professional design team, OEM orders are highly welcome!

9. Contact :

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Techinal Support or Remote Debuging
Warranty: 12-24 Month
Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Structure Type: Closed Type
Customization:
Available

|

air compressor

Can Water-Lubricated Compressors Be Used in High-Pressure Applications?

Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:

Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.

The ability of a water-lubricated compressor to operate at high pressures depends on several factors:

  1. Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
  2. Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
  3. Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
  4. Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.

It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.

When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.

air compressor

What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?

When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:

Operating Environment:

  • Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
  • Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.

Maintenance and Service:

  • Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
  • Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.

Environmental Impact:

  • Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
  • Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.

Application-Specific Factors:

  • Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
  • Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.

Cost Considerations:

  • Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
  • Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.

By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.

air compressor

How does a water lubrication system work in air compressors?

A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:

1. Water Injection:

In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.

2. Lubrication:

As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.

3. Cooling:

The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.

4. Separation and Filtration:

After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.

5. Water Treatment:

In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.

6. Recirculation or Discharge:

Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.

By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.

China supplier 15-400kw Direct Driven Industrial Silent/Mute Medical Dry Oil Free Screw Air Compressor   arb air compressorChina supplier 15-400kw Direct Driven Industrial Silent/Mute Medical Dry Oil Free Screw Air Compressor   arb air compressor
editor by CX 2024-04-03

China supplier 3000psig High Pressure Oil Free Air Oxygen Gas Diaphragm Piston Compressor with high quality

Product Description

3000psig High Pressure Oil Free Air Oxygen Gas Diaphragm Piston Compressor

As the leading Oil-free Medical Oxygen Booster manufacturer in China, Medical Oxygen Booster is an important product for us.

 
Advantage
Oil-Free
Our Medical Oxygen Booster is completely oil-free and does not use any lubricating oil. The cylinder is made of stainless steel with oil-free design. The guide ring, piston ring and piston rod packing are all made of self-lubricating material, with 100% oil-free lubrication. All this assures that oxygen is clean and pollution-free. High temperature resistant grease lubrication is adopted for bearing parts, which will not contact with compression medium, avoid gas pollution during compression process, to ensure gas purity. It was controlled by the microcomputer controller, it has the functions of high exhaust temperature, low intake pressure and high exhaust pressure with alarm shutdown, high automation level, and more reliable operation.

Working Speed 
Our Medical Oxygen Booster working speed is very slow, usually 200-400rpm, which is suitable for 24 hours of continuous working conditions.

Selection
We can configure data remote display and remote control according to customer’s requirement.
Our Medical Oxygen Booster can be used in hospital oxygen centers to increase the pressure of oxygen lines in rooms, and to boost oxygen and fill cylinders. It can also be used for industrial acetylene combustion cutting, waste steel cutting in steel works, supporting boiler oxygen combustion, and circulating the steam oxygen in low temperature liquid oxygen tank to the tank for various working conditions.

 

Type
According to the customer’s oxygen usage, Our Medical Oxygen Booster are divided into 5 types according to the cylinders form:
 
♣ Level-1 compression, single cylinder
♣ Level-2 compression, double cylinder
♣ Level-3 compression, triplex cylinder
♣ Level-4 compression, 4 cylinder
♣ Level-5 compression, vertical style
 

Pressure Range
Oil-free low pressure Medical Oxygen Booster, could be used in industrial boiler combustion support, hospital centralized oxygen supply booster, and other fields. The pressure ranging is from 0.2~3bar to 10bar-15barg.
 
Application
Oil-free high pressure Medical Oxygen Booster, could be used for high pressure oxygen bottle filling, so as to facilitate the oxygen storage and transport. According to the customers’ demand, the filling pressure is divided into 15mpa, 20mpa, and up to 30mpa. The filling is flow from 1Nm3/h to 300Nm3/h, especially suitable for the filling of PSA oxygen generator. It has characteristics of clean, totally oil-free, simple operation, reliable quality, low speed, and low noise. The Medical Oxygen Booster could be working in continuous working conditions for a long time, which is the best choice of oxygen compressor.
 
Cooling Way
Medical Oxygen Booster, according to the cooling way, can be divided into air cooled and water cooled, customers can choose from it according to the actual local situation.
 

 

200bar/3000psi W-type Oil Free Oxygen compressor Booster
Model Flow Rate
Nm3/h
Intel Pressure
MPa
Discharge Pressure
MPa
Power Rate
KW
Dimension
mm
Inlet/Outlet
mm
Cooling Type
WWZ-(3~5)/4-150 3~5 0.4 15 4 1080X820X850 20,10 Air
WWZ-(6~8)/4-150 6~8 0.4 15 5.5 1080X870X850 25,10 Air
WWZ-(9~12)/4-150 9~12 0.4 15 7.5 1080X900X850 25,10 Air
WWZ-(13~17)/4-150 13~17 0.4 15 11 1250X1571X850 25,10 Air
WWZ-(18~20)/4-150 18~20 0.4 15 15 1250X1571X850 25,10 Air
WWZ-(21~25)/4-150 21~25 0.4 15 15 1250X1571X850 32,12 Air
WWZ-(16~20)/4-150  * 16~20 0.4 15 7.5 1300X1571X900 32,12 Air /Water
WWZ-(21~27)/4-150  * 21~27 0.4 15 11 1350X1571X900 32,12 Air /Water
WWZ-(28~50)/4-150  * 28~50 0.4 15 15 1600X1100X1100 32,16 Water
SWZ-(51~65)/4-150  * 51~65 0.4 15 22 1800x1100X1200 51,18 Water
WWZ-(66~100)/4-150-II * 66~100 0.4 15 15×2 2100X1650X1200 51,18 Water
SWZ-(20~30)/0-150  * 20~30 0 15 15 1800x1100X1200 32,16 Water

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Oversea Service Available
Warranty: 36months
Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 18200/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Are There Specific Water Treatment Requirements for Water-Lubricated Compressors?

Water-lubricated compressors often have specific water treatment requirements to ensure optimal performance, prevent equipment damage, and maintain the desired water quality. Here’s a detailed explanation of the water treatment considerations for water-lubricated compressors:

Water Quality:

  • Purity: The water used for lubrication should be clean and free from impurities, contaminants, or excessive minerals. Impurities in the water can lead to corrosion, blockages, and reduced lubrication effectiveness. Water sources should be evaluated to ensure they meet the required purity standards.
  • Chemical Composition: The chemical composition of the water should be within acceptable limits to avoid any adverse reactions with compressor components or lubricants. Certain water characteristics, such as pH, alkalinity, hardness, and conductivity, need to be monitored and controlled to prevent issues like scaling, fouling, or chemical reactions.

Water Treatment Methods:

  • Filtration: Filtration systems are commonly used to remove particulate matter, sediment, or debris from the water. Filters can range from simple strainers to more advanced filtration systems, depending on the specific water quality requirements and the level of filtration needed.
  • Water Softening: If the water has high levels of hardness minerals, such as calcium and magnesium, water softening methods may be necessary. Water softeners use ion exchange or other processes to remove the hardness minerals, which can help prevent scaling and reduce the risk of deposits in the compressor system.
  • Reverse Osmosis (RO): Reverse osmosis is a water treatment method that uses a semi-permeable membrane to remove dissolved solids, ions, and impurities from the water. RO systems can effectively reduce the total dissolved solids (TDS) and improve the overall water quality, making it suitable for water-lubricated compressors.
  • Chemical Treatment: In some cases, chemical treatments may be required to control water chemistry parameters, such as pH or alkalinity. Chemical additives can be used to adjust or stabilize water chemistry within the desired range, preventing corrosion, scaling, or other issues.

Water treatment requirements for water-lubricated compressors can vary depending on factors such as the compressor design, operating conditions, water source quality, and specific application requirements. It is essential to consult the compressor manufacturer’s recommendations and guidelines regarding water treatment. The manufacturer’s guidelines will provide specific information on water quality limits, treatment methods, and any required maintenance procedures related to water treatment.

Regular monitoring of water quality, including periodic testing and analysis, is recommended to ensure that the water treatment measures are effective and the desired water quality is maintained. Water treatment systems should be properly maintained and periodically serviced to ensure their optimal performance and prevent any potential issues that could affect the operation and longevity of water-lubricated compressors.

air compressor

How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?

Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:

Positive Effects:

  • Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
  • Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
  • Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.

Negative Effects:

  • Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
  • Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
  • System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.

Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.

air compressor

Advantages of Using Water as a Lubricant in Air Compressors

Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:

  1. Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
  2. Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
  3. Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
  4. Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
  5. Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.

Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.

China supplier 3000psig High Pressure Oil Free Air Oxygen Gas Diaphragm Piston Compressor   with high qualityChina supplier 3000psig High Pressure Oil Free Air Oxygen Gas Diaphragm Piston Compressor   with high quality
editor by CX 2024-04-02

China Professional Cheap Factory Price 100% Oil-Free Oxygen Booster Compressor Air Compressor supplier

Product Description

100% Oil-Free Oxygen Booster Compressor Air Compressor

Product Description

Oil-free piston oxygen compressor is the preferred choice when contamination-free, leak-tight oxygen compression is required. CHINAMFG oxygen compressor is designed to afford you high quality, high reliability, low maintenance and extended service intervals.

Based CHINAMFG our extensive experience in compressor technology, and our state-of-the-art engineering and manufacturing capabilities, we work with our customers to provide the optimum solution to satisfy their oxygen gas compression needs.

We- Cape CHINAMFG can provide both standard and custom designed oxygen compressors with a comprehensive assortment of options. We furnish a wide range of equipment from basic units to turnkey, skid-mounted and computer controlled systems.

Our oxygen compressors range in size from 3 hp to 200 hp (3 to 150 Kw), discharge pressures vary from 50 psig to 3000 psig (3 barg to 300 barg).
 

Product Parameters

150bar/2200PSI Four Stage Compression Oxygen Compressor
Model Flow rate Inlet
Pressure
Discharge
pressure
Power Rate Weight Dimension
(mm)
Noise
GOW-3/4-150 1~3m³/h 3~4bar 150bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-6/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-10/4-150 10m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-150 12m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-150 15m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-150 20m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30/4-150 30m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-40/4-150 40m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-45/4-150 45m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50/4-150 50m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-60/4-150 60m³/h 3~4bar 150bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~150/4-150 70~150m³/h 3~4bar 150bar 30~45KW 2000kg 2100*1100*1600 ≤80db
200bar/3000PSI Four Stage Compression Oxygen Compressor
GOW-3/4-200 1~3m³/h 3~4bar 200bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-200 5m³/h 3~4bar 200bar 3KW 320kg 1000*800*1100 ≤80db
GOW-10/4-200 10m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-200 12m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-200 15m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-200 20m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30~45/4-200 30m³/h 3~4bar 200bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50~60/4-200 50~60m³/h 3~4bar 200bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~120/4-200 80~120m³/h 3~4bar 200bar 30~45KW 2000kg 2100*1100*1600 ≤80db

 

After Sales Service

Actual use cases

 

 

Packaging & Shipping

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Overseas Service Available
Warranty: 18months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Series Arrangement
Cylinder Position: Vertical
Samples:
US$ 18200/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Water-Lubricated Compressors Be Used in High-Pressure Applications?

Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:

Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.

The ability of a water-lubricated compressor to operate at high pressures depends on several factors:

  1. Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
  2. Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
  3. Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
  4. Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.

It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.

When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.

air compressor

How Are Water-Lubricated Air Compressors Used in Automotive Applications?

Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:

Tire Inflation:

  • Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
  • Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.

Painting and Finishing:

  • Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
  • Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.

Brake and Suspension Systems:

  • Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
  • Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.

Diagnostic and Testing Equipment:

  • Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
  • Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.

Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.

air compressor

Advantages of Using Water as a Lubricant in Air Compressors

Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:

  1. Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
  2. Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
  3. Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
  4. Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
  5. Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.

Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.

China Professional Cheap Factory Price 100% Oil-Free Oxygen Booster Compressor Air Compressor   supplier China Professional Cheap Factory Price 100% Oil-Free Oxygen Booster Compressor Air Compressor   supplier
editor by CX 2024-03-29

China supplier Industrial Compressor Heavy Duty VSD Stationary AC Power Electric Air Cooled Directly Driven Rotary Screw Gas Air Compressors Pump with Germany Ghh Rand Air End lowes air compressor

Product Description

Product Description

ZIQI CHINAMFG Screw Air Compressor Advantages:

A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings

Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD]. The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can  reduce energy costs by 35% or more .

Technical Parameter

Model Air pressure Max air displacement  Motor power transmission dimension Weight Noise Outlet
cooling type
mpa bar(e)  psi(g)  m3/min  cfm  hp  kw  belt drive 
&
air cooling
L(mm) W(mm) H(mm) Kgs dB(A) mm
GA-3.7A 0.7 7 102 0.55 19 5 3.7  680  660  780  220 60±2  20
0.8 8 116 0.45 16
1 10 145 0.35 12
GA-5.5A 0.7 7 102 0.8 28 7 5.5 680 660 780 230 61±2 20
0.8 8 116 0.7 25
1 10 145 0.6 21
1.3 13 189 0.5 18
GAS-7.5A VFC 0.7 7 102 1.3 46 10 7.5 950 650 915 270 62±2 20
0.8 8 116 1.2 42
1 10 145 1.1 39
1.3 13 189 0.9 32
GAS-11A VFC 0.7 7 102 1.8 64 15 11 950 650 915 280 63±2 20
0.8 8 116 1.7 60
1 10 145 1.5 53
1.3 13 189 1.2 42
GAS-15A VFC 0.7 7 102 2.7 95 20 15 1260 850 1220 540 66±2 25
0.8 8 116 2.5 88
1 10 145 2.3 81
1.3 13 189 2 71
GAS-18.5A VFC 0.7 7 102 3.2 113 25 18.5 1260 850 1220 550 67±2 25
0.8 8 116 3 106
1 10 145 2.8 99
1.3 13 189 2.4 85
GAS-22A VFC 0.7 7 102 3.8 134 30 22 1260 850 1220 560 67±2 25
0.8 8 116 3.6 127
1 10 145 3.2 113
1.3 13 189 2.8 99
GAS-30A VFC 0.7 7 102 5.7 201 40 30 1500 970 1375 780 67±2 40
0.8 8 116 5.5 194
1 10 145 5 177
1.3 13 189 4.5 159
GAS-37A VFC 0.7 7 102 6.8 240 50 37 1500 970 1375 800 68±2 40
0.8 8 116 6.31 222
1 10 145 5.7 201
1.3 13 189 5 177
GAS-45A VFC 0.7 7 102 7.9 279 60 45 1500 970 1375 820 69±2 40
0.8 8 116 7.4 261
1 10 145 6.9 244
1.3 13 189 6.1 215
GAS-55A VFC 0.7 7 102 10.9 385 75 55 direct drive &air cooling or water cooling 2150 1326 1766 1550 69±2 50
0.8 8 116 10.4 367
1 10 145 9.4 332
1.3 13 189 8.6 304
GAS-75A VFC 0.7 7 102 14.5 512 100 75 2150 1326 1766 1600 70±2 50
0.8 8 116 13.8 487
1 10 145 12.6 445
1.3 13 189 11.2 395
GAS-90A VFC 0.7 7 102 17 600 120 90 2545 1450 1900 2500 75±2 65
0.8 8 116 16.5 583
1 10 145 15.2 537
1.3 13 189 14 494

*For other requirements,please contact the salesman.

Company Information

Packaging & Shipping

FAQ

 

Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.

How to get quicker quotation?

When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.

 

Hot Products

VSD Oil-Free Screw Air Compressor Combined Screw Air Compressor Two Stage Screw Air Compressor

 

Contact

Bob Cui | Overseas Sale Manager

ZIQI Compressor(ZheJiang )Co.,Ltd

Add:No.280,Wangwei West Rd.Fengjing Industrial Park, Xihu (West Lake) Dis.n Dist.,ZheJiang ,CN.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China supplier Industrial Compressor Heavy Duty VSD Stationary AC Power Electric Air Cooled Directly Driven Rotary Screw Gas Air Compressors Pump with Germany Ghh Rand Air End   lowes air compressorChina supplier Industrial Compressor Heavy Duty VSD Stationary AC Power Electric Air Cooled Directly Driven Rotary Screw Gas Air Compressors Pump with Germany Ghh Rand Air End   lowes air compressor
editor by CX 2024-03-29

China supplier 4kw 5.5kw 7.5kw 11kw Belt OEM Screw Air Compressor China Factory Fix Speed Made for Industry arb air compressor

Product Description

Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!

Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP

Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug

Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.

Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models

SPECIFICATION

MODEL LG-15B-8
Ambient Temperature -5ºC to +45 ºC
Max Pressure (bar) 8
Air Delivery (m3/min) 1.5
Compression Stage Single Stage Compression
Cooling Method Air Cooled
Discharge Temperature (ºC) ≤ 75ºC
Oil  Cotent (ppm) ≤3
Transmission Method Belt Driven
Sound Level dB(A) 66±3
Lubricating Oil Amount 7.5L
Motor Power 11KW/15HP
Motor Level Of Protection  IP55
Voltage 380V/3ph/50Hz
Dimensions (mm) 1050×740×1150(L*W*H)
Weight 225KG
Discharge Outlet Thread 1/2”

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Operation Training; Maintenance
Warranty: 2-Year-Warranty
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Installation Type: Stationary Type
Samples:
US$ 800/set
1 set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China supplier 4kw 5.5kw 7.5kw 11kw Belt OEM Screw Air Compressor China Factory Fix Speed Made for Industry   arb air compressorChina supplier 4kw 5.5kw 7.5kw 11kw Belt OEM Screw Air Compressor China Factory Fix Speed Made for Industry   arb air compressor
editor by CX 2024-03-28

China supplier DC Universal Type Silent Oil Free Air Compressor Machines for Food Industry air compressor for sale

Product Description

AirHorse Promises Every Machine Will Run Well More Than 15 Years

We have obtained the approval of ISO9001-2000 international quality management system, ISO14001 Enviroment management system authentication, CE quality system, UL quality systemASME quality system etc.

Features Of Belt Driven Screw Air Compressor

1 . Air end with high-efficiency

2. Double Screw with low noise, Super Silenced Enclosure

3. Elegant compact design. Fully open access door to inner parts for easy service.

4. 100% Continuous duty operation. Load/No Load operation

5. High quality CE Certificate industrial electric motors. ISO,CE,UL Certificate

6. Easy to use and read LCD control panel

7. High temperature, high pressure and anti-rotation shutdown

8. Energy efficient operation

9. 5 micron, water-resistant air filtration material

10. 1year full machine warranty,3years air end warranty.

11. Supply the machine with different working voltage according to customer’s request, 
such as: 380Volt,3phase,50hz
420Volt,3phase,50hz
380Volt,3phase,60hz
220Volt,3phase and 60hz, etc.
 

Technical Specifications of Direct Driven Screw Air Compressor
          Model AHD-30A AHD-50A AHD-75A AHD-100A AHD-120A AHD-150A AHD-175A AHD-220A AHD-250A AHD-300A AHD-350A
Free air deliver/Discharge pressure
(m3/min/Mpa)
3.8/0.7
3.6/0.8
3.2/1.0
2.8/1.2 
6.8/0.7
6.2/0.8
5.6/1.0
4.9/1.2
10.0/0.7
9.1/0.8
8.5/1.0
7.6/1.2
13.5/0.7
12.6/0.8
11.2/1.0
10.0/1.2
16.1/0.7
15.0/0.8
13.8/1.0
12.3/1.2
21/0.7
19.8/0.8
17.0/1.0
15.3/1.2
25.2/0.7
24.0/0.8
21.0/1.0
18.3/1.2
28.7/0.7
27.6/0.8
24.6/1.0
21.5/1.2
32.0/0.7
30.5/0.8
27.5/1.0
24.8/1.2
36.7/0.7
34.5/0.8
30.2/1.0
27.8/1.2
42.0/0.7
40.5/0.8
38.1/1.0
34.6/1.2
Free air deliver/Discharge pressure
(CFM/PSI)
134/102
127/116
113/145
99/174
240/102
219/116
198/145
173/174
353/102
322/116
300/145
269/174
477/102
445/116
396/145
353/174
569/102
530/116
488/145
435/174
742/102
700/116
601/145
541/174
890/102
848/116
742/145
647/174
1014/102
975/116
869/145
760/174
1131/102
1078/116
972/145
876/174
1297/102
1219/116
1067/145
982/174
1484/102
1431/116
1346/145
1223/174
Compression stage   Single stage
Ambient temprerature  -5–+45ºC
Cooling mode Air cooling
Discharge temperature Ambient temperature+15ºC
Lubricant   (L) 14.5 20 45 75 85 120 210 220
Noise Level    (Db) 68±2 72±2 75±2 76±2
Drive method Direct driven
Electricity (V/ph/Hz) 380V/3ph/50Hz(or customized)
Motor power (KW/HP) 22/30 37/50 55/75 75/100 90/120 110/150 132/175 160/220 185/250 220/300 250/350
Starting method Y-Starter (Star CHINAMFG starting)
Dimension (mm) 1200*900*1150 1560*1000*1365 1800*1070*1490 1800*1070*1490 2100*1400*1780 2500*1450*1800 2700*1550*1800 2700*1550*1800 2800*1800*1950 2800*1800*1950 3250*2100*2300
Net Weight (kg) 510 740 1100 1270 1450 2150 2750 3150 3450 3850 4250
Air outlet diameter (inch/mm) 1” 11/2” 2” 21/2” DN80

 
Product display

Our Services & Strength 

HangZhou AirHorse Compressor co., ltd is the professional manufacturing and exporter.We are a factory in HangZhou, China.We are specialized in air compressor research, development and production. The main products including screw air compressor, and air dryer etc. We do many OEM for international famous brand such as CHINAMFG Rand.

We have obtained the approval of ISO9001-2000 international quality management system, ISO14001 Enviroment management system authentication, CE quality system,  ASME quality system etc.  

 Packaging and Shipping

AirHorse compressor made each air compressor will be through various tests, only test run successful machine, will enter the next process: cleaning and packing, our packing is to adopt international standards and according to the customer’s requirements of transport equipment, in order to protect our machine can intact meet customer’s hands, transportation will be without the mode of transportation: by sea, air, train, car traffic, etc.

Our Service
 

After-sale Service

• Any questions or requests before, during or after sales, we would like to help you any time and will find you the best solution in 24 hours.

• Warranty: One year for the whole machine Genuine spare parts will be provided with best price.

• Over board engineer service is available.

Special Customized Service

1) Full OEM

• Quantity: at least 5 pcs

• In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.

2) Half OEM

• Quantity: no limit

• Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.

3) Logo OEM

• Quantity: no limit

• Only the logo will be changed to yours, and no extra fee will be charged.

Overseas Engineer Service

• We are available to send our engineer for aboard service. Only need you to arrange the accommodation, transportation and translator. Extra cost for each will be discussed based on local price level.

FAQ

Q1: Are you factory or trade company?
A1: We are factory.

Q2: What the exactly address of your factory?
A2: Our company is located in AirHorse Industrial Park, Xihu (West Lake) Dis. District, HangZhou, ZheJiang , China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5: What about product package?
A5: We pack our products strictly with standard seaworthy case.

Q6: What about the voltage of products?
Can they be customized? A6: Yes, of course. The voltage can be customized according to your equirement.

Q7: Which payment term can you accept?
A7: 40% T/T in advanced, 60% T/T against the B/L copy.

Q8: How long will you take to arrange production?
A8: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 25-30 days.

Q9: Can you accept OEM orders?
A9: Yes, with professional design team, OEM orders are highly welcome.

Q10: Which trade term can you accept?
A10: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.
 

If you are interested in our products, please send us an inquiry, we will give you a best price.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Spare Parts
Warranty: One Year Whole Machine
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Samples:
US$ 1438/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do You Ensure Proper Water Lubrication in Air Compressors?

Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:

  1. Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
  2. Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
  3. Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
  4. Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
  5. Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
  6. Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.

By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.

air compressor

How Do You Troubleshoot Common Problems with Water-Lubrication Systems?

When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:

Step 1: Identify the Problem:

The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.

Step 2: Check Water Supply:

Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.

Step 3: Inspect Water Filters and Strainers:

Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.

Step 4: Verify Water Pressure:

Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.

Step 5: Examine Water-Lubrication Components:

Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.

Step 6: Check for Air in the System:

Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.

Step 7: Inspect Cooling Mechanisms:

Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.

Step 8: Consult Manufacturer Documentation:

If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.

Step 9: Seek Professional Assistance:

If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.

By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.

air compressor

Are There Any Downsides to Using Water-Lubricated Air Compressors?

While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:

  1. Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
  2. Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
  3. Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
  4. Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
  5. Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.

Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.

China supplier DC Universal Type Silent Oil Free Air Compressor Machines for Food Industry   air compressor for saleChina supplier DC Universal Type Silent Oil Free Air Compressor Machines for Food Industry   air compressor for sale
editor by CX 2024-03-18

China factory 30 Bar Oil Free Low Noise Rotary Screw Air Compressor 50 HP 37kw Rotary Air Compressor supplier

Product Description

OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.

 

TECHNICAL DATA
 
Model Power Pressure (bar) Air Flow (m3/min) Noise Level dBA Outlet Size Weight (kgs) Lubricating Water(L) Filter Element (B)-(Z) Dimension LxWxH (mm)
OF-7.5F 7.5kw 10hp 8 1.0 60 RP 3/4 400 22 (25cm) 1 1000*720*1050
OF-11F 11kw 15hp 8 1.6 63 460 1156*845*1250
OF-15F 15kw 20hp 8 2.5 65 RP 1 620 28 (50cm) 1 1306*945*1260
OF-18F 18.5kw 25hp 8 3.0 67 750 33 1520*1060*1390
OF-22F 22kw 30hp 8 3.6 68 840 33 1520*1060*1390
OF-30F 30kw 40hp 8 5.0 69 RP 11/4 1050 66 (25cm) 5 1760*1160*1490
OF-37F 37kw 50hp 8 6.2 71 1100 1760*1160*1490
OF-45S 45kw 60hp 8 7.3 74 RP 11/2 1050 88 1760*1160*1490
OF-45F 45kw 60hp 8 7.3 74 1200 1760*1160*1490
OF-55S 55kw 75hp 8 10 74 RP 2 1250 110 (50cm) 5 1900*1250*1361
OF-55F 55kw 75hp 8 10 74 2200 (50cm) 7 2350*1250*1880
OF-75S 75kw 100hp 8 13 75 1650 (50cm) 5 1900*1250*1361
OF-75F 75kw 100hp 8 13 75 2500 (50cm) 7 2550*1620*1880
OF-90S 90kw 125hp 8 15 76 2050 (50cm) 5 1900*1250*1361
OF-90F 90kw 125hp 8 15 76 2650 (50cm) 7 2550*1620*1880
OF-110S 110kw 150hp 8 20 78 DN 65 2550 130 (50cm) 12 2200*1600*1735
OF-110F 110kw 150hp 8 20 78 3500 130 3000*1700*2250
OF-132S 132kw 175hp 8 23 80 2700 130 2200*1600*2250
OF-160S 160kw 220hp 8 26 82 2900 165 2200*1600*2250
OF-185S 185kw 250hp 8 30 83 DN 100 3300 180 (50cm) 22 2860*1800*1945
OF-200S 200kw 270hp 8 33 83 3500 2860*1800*1945
OF-220S 220kw 300hp 8 36 85 4500 2860*2000*2300
OF-250S 250kw 340hp 8 40 85 4700 2860*2000*2300
OF-315S 315kw 480hp 8 50 90 5000 2860*2000*2300

 F– air cooling method     S– water cooling method

                           
The brand “OFAC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.

FAQ

Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.

Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.

Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.

Q4: Can you use our brand?
A4: Yes, OEM is available.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.

Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.

Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 2 Years
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Are the Safety Considerations When Using Water-Lubricated Compressors?

When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:

  1. Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
  2. Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
  3. Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
  4. Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
  5. Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
  6. Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.

It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.

air compressor

How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?

Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:

Positive Effects:

  • Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
  • Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
  • Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.

Negative Effects:

  • Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
  • Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
  • System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.

Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.

air compressor

How Is Water Quality Crucial for the Performance of These Compressors?

Water quality plays a crucial role in the performance of water-lubricated air compressors. The quality of the water used for lubrication directly impacts the efficiency, reliability, and lifespan of these compressors. Here are the key reasons why water quality is essential for optimal compressor performance:

  1. Lubrication effectiveness: Water serves as the lubricant in water-lubricated air compressors. The water forms a protective film between moving parts, reducing friction and wear. However, if the water contains impurities or contaminants, it can compromise the lubricating properties. Impurities like minerals, sediments, or dissolved solids can hinder the formation of an effective lubricating film, leading to increased friction and potential damage to the compressor components.
  2. Corrosion prevention: Water with high mineral content, such as hard water, can promote corrosion within the compressor system. Minerals like calcium and magnesium can react with metal surfaces, leading to rust, scale formation, and degradation of internal components. Corrosion compromises the structural integrity of the compressor, reduces its efficiency, and may result in costly repairs or even premature failure.
  3. Preventing blockages: Poor water quality can result in the accumulation of sediments, debris, or contaminants within the compressor system. These deposits can block water passages, filters, or valves, impeding the flow of water and affecting the overall performance of the compressor. Restricted water flow may lead to inadequate cooling, reduced lubrication, and compromised efficiency.
  4. Preventing fouling and fouling-related issues: Fouling refers to the accumulation of organic or inorganic deposits on heat transfer surfaces, such as heat exchangers or radiators, within the compressor system. Poor water quality can contribute to fouling, reducing heat transfer efficiency and impairing the cooling capacity of the compressor. This can result in elevated operating temperatures, decreased performance, and potential damage to the compressor.
  5. System cleanliness: Clean water is crucial for maintaining a clean and sanitary compressor system, especially in industries like food and beverage or medical applications. Contaminated water can introduce harmful bacteria, microorganisms, or particles into the compressor, posing a risk to product quality, safety, or patient well-being.

To ensure optimal performance and longevity of water-lubricated air compressors, it is important to monitor and maintain the quality of the water used for lubrication. Regular water analysis, proper filtration, and appropriate water treatment measures should be employed to remove impurities, control mineral content, and maintain the desired water quality. By ensuring clean and high-quality water, the compressor can operate efficiently, minimize the risk of component damage, and contribute to a reliable and safe compressed air system.

China factory 30 Bar Oil Free Low Noise Rotary Screw Air Compressor 50 HP 37kw Rotary Air Compressor   supplier China factory 30 Bar Oil Free Low Noise Rotary Screw Air Compressor 50 HP 37kw Rotary Air Compressor   supplier
editor by CX 2024-03-14

China supplier CHINAMFG Rand Reciprocating/Piston Air Compressor S5K6 with Good quality

Product Description

 

Ingersoll Rand Reciprocating/Piston Air Compressor
Model: S5K6
 

 

CHINAMFG Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands-including Club Car , CHINAMFG Rand , CHINAMFG King and Trane -work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a $13 billion global business committed to a world of sustainable progress and enduring results.
CHINAMFG Rand, IR, the IR logo, PAC software, V-Shield and Ultra Coolant are trademarks of CHINAMFG Rand, its subsidiaries and/or affiliates. All other trademarks are the property of their respective owners. CHINAMFG Rand compressors are not designed, intended or approved for breathing air applications. CHINAMFG Rand does not approve specialised equipment for breathing air applications and assumes no responsibility or liability for compressors used for breathing air service. Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with CHINAMFG Rand’s standard terms and conditions of sale for such products, which are available CHINAMFG request. Product improvement is a continuing goal at CHINAMFG Rand. Any designs, diagrams, pictures, photographs and specifications contained within this document are for representative purposes only and may include optional scope and/or functionality and are subject to change without notice or obligation.

Our company’s purpose – to help make life better by relying on us – and the set of values that define us are the foundation of our company’s culture and success. We think and act like owners, taking responsibility for our own actions and always striving to care for our neighbors and create a brighter, healthier shared planet for everyone. We are committed to the success of our customers. Our goal is to operate with clarity and straightforwardness, building lifelong, ongoing and meaningful connections with our customers.

We are driven by a spirit of action and an entrepreneurial spirit of innovation and progress; we accept and embrace the many challenges that come with such responsibility. We speak honestly, admit mistakes, and always strive for openness and clarity. We have bold ambitions while moving CHINAMFG with humility and integrity, striving to earn trust every day. We have the expertise and experience to solve the toughest problems, but no matter how difficult the challenge, we are always sincere and humble. We are committed to fostering team innovation and cultivating and celebrating a culture that embraces diverse opinions, backgrounds and experiences. Employees who are driven by our purpose and values are an unstoppable force that strengthens our ability to deliver benefits to our stakeholders and ensure the long-term health and safety of our company.
Bestrand is a leading supplier of compressed air system. Past 10 years, we established very good partnership with CHINAMFG Rand. We have provided all kinds of products from CHINAMFG Rand include air compressor, after treatment, spare parts to customers all over the world. Pls feel free to contact us for a quote. 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling or Water Cooling
Cylinder Arrangement: balanced opposed or duplex or parallel or series
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: other
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China supplier CHINAMFG Rand Reciprocating/Piston Air Compressor S5K6   with Good qualityChina supplier CHINAMFG Rand Reciprocating/Piston Air Compressor S5K6   with Good quality
editor by CX 2024-03-12

China supplier 2023 Oil Free Scroll Air-End Oil Free Air Compressor for Electric Vehicle air compressor parts

Product Description

ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC”.

OIL FREE SCROLL AIR COMPRESSOR
 

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP1.5-8A 1.5/2 140 0.6-0.8 540*540*770 87
AP1.5-8B 540*540*1190 136
AP2.2-8A 2.2/3 240 540*540*770 93
AP2.2-8B 540*540*1190 142
AP3.7-8A 3.7/5 410 540*540*770 110
AP3.7-8B 540*540*1190 149
AP1.5-10A 1.5/2 120 0.8-1.0 540*540*770 87
AP1.5-10B 540*540*1190 136
AP2.2-10A 2.2/3 200 540*540*770 93
AP2.2-10B 540*540*1190 142
AP3.7-10A 3.7/5 340 540*540*770 110
AP3.7-10B 540*540*1190 149

 

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP7.5-8A 7.5/10 820 0.6-0.8 1000*590*976 227
AP11-8A 11/15 1230 1050*590*1470 335
AP15-8A 15/20 1640 1250*740*1800 488
AP18.5-8A 18.5/25 2050 1235*740*1990 734
AP7.5-10A 7.5/10 680 0.8-1.0 1000*590*976 227
AP11-10A 11/15 1571 1050*590*1470 335
AP15-10A 15/20 1360 1250*740*1800 488
AP18.5-10A 18.5/25 1700 1235*740*1990 734

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP5.5-C 5.5/7.5 610 0.6-0.8 660*750*1200 175
AP7.5-8C 7.5/10 800 180
AP11-8C 11/15 1220 1250*700*1171 338
AP15-8C 15/20 1640 350
AP18.5-8C 18.5/25 2040 1250*700*1602 540
AP22-8C 22/30 2440 558
AP30-8C 30/40 3280 1230*1700*1602 900
AP33-8C 33/45 3660 1080
AP45-8C 45/60 5000 1116

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP22-8A 22/30 2460 0.6-0.8 1580*1235*1852 860
AP30-8A 30/40 3280 1000
AP37-8A 37/50 4100 1580*1235*1990 1470
AP22-8A 22/30 2040 0.8-1.0 1580*1235*1630 910
AP30-8A 30/40 2720 1580*1235*1990 1140
AP37-8A 37/50 3400 1470

 

TECHNICAL DATA
 
Model Power Pressure (bar) Air Flow (m3/min) Noise Level dBA Outlet Size Weight (kgs) Lubricating Water(L) Filter Element (B)-(Z) Dimension LxWxH (mm)
OF-7.5F 7.5kw 10hp 8 1.0 60 RP 3/4 400 22 (25cm) 1 1000*720*1050
OF-11F 11kw 15hp 8 1.6 63 460 1156*845*1250
OF-15F 15kw 20hp 8 2.5 65 RP 1 620 28 (50cm) 1 1306*945*1260
OF-18F 18.5kw 25hp 8 3.0 67 750 33 1520*1060*1390
OF-22F 22kw 30hp 8 3.6 68 840 33 1520*1060*1390
OF-30F 30kw 40hp 8 5.0 69 RP 11/4 1050 66 (25cm) 5 1760*1160*1490
OF-37F 37kw 50hp 8 6.2 71 1100 1760*1160*1490
OF-45S 45kw 60hp 8 7.3 74 RP 11/2 1050 88 1760*1160*1490
OF-45F 45kw 60hp 8 7.3 74 1200 1760*1160*1490
OF-55S 55kw 75hp 8 10 74 RP 2 1250 110 (50cm) 5 1900*1250*1361
OF-55F 55kw 75hp 8 10 74 2200 (50cm) 7 2350*1250*1880
OF-75S 75kw 100hp 8 13 75 1650 (50cm) 5 1900*1250*1361
OF-75F 75kw 100hp 8 13 75 2500 (50cm) 7 2550*1620*1880
OF-90S 90kw 125hp 8 15 76 2050 (50cm) 5 1900*1250*1361
OF-90F 90kw 125hp 8 15 76 2650 (50cm) 7 2550*1620*1880
OF-110S 110kw 150hp 8 20 78 DN 65 2550 130 (50cm) 12 2200*1600*1735
OF-110F 110kw 150hp 8 20 78 3500 130 3000*1700*2250
OF-132S 132kw 175hp 8 23 80 2700 130 2200*1600*2250
OF-160S 160kw 220hp 8 26 82 2900 165 2200*1600*2250
OF-185S 185kw 250hp 8 30 83 DN 100 3300 180 (50cm) 22 2860*1800*1945
OF-200S 200kw 270hp 8 33 83 3500 2860*1800*1945
OF-220S 220kw 300hp 8 36 85 4500 2860*2000*2300
OF-250S 250kw 340hp 8 40 85 4700 2860*2000*2300
OF-315S 315kw 480hp 8 50 90 5000 2860*2000*2300

          F– air cooling method     S– water cooling method

                           
                            The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors,
                            oil-free compressors and air end, special gas compressors, various air compressors and
                            post-processing equipment, providing customers with High-quality, environmentally friendly and
                            efficient air system solutions and fast and stable technical services.

FAQ

                                Q1: Warranty terms of your machine?
                                A1: One year warranty for the machine and technical support according to your needs.

                                Q2: Will you provide some spare parts of the machines?
                                A2: Yes, of course.

                                Q3: What about product package?
                                A3: We pack our products strictly with standard seaworthy case. Rcommend wooden
                                      box.

                                Q4: Can you use our brand?
                                A4: Yes, OEM is available.

                                Q5: How long will you take to arrange production?
                                A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within
                                      3-15 days. Other  voltage or other color we will delivery within 30-45 days.

                                Q6: How Many Staff Are There In your Factory?
                                A6: About 100.
 
                                Q7: What’s your factory’s production capacity?
                                A7: About 550-650 units per month.

                                Q8: What the exactly address of your factory?
                                A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in
                                       HangZhou, ZheJiang ,  China.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Installation Type: Stationary Type
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China supplier 2023 Oil Free Scroll Air-End Oil Free Air Compressor for Electric Vehicle   air compressor partsChina supplier 2023 Oil Free Scroll Air-End Oil Free Air Compressor for Electric Vehicle   air compressor parts
editor by CX 2024-03-07

China supplier China Supplier 22kw 30HP Screw Air Oil Free Compressor with Hot selling

Product Description

Product Description
headline:China supplier 22KW 30HP screw air oil free compressor 

Model AS-30HB
Power(KW) 22
Free air deliver /Discharge pressure (m3/min/Mpa) 3.9/0.7
3.7/0.8
3.3/1.0
2.8/1.2
Compressor Stage Single Stage
Ambient Temperature(ºC) -5ºC±45ºC
Cooling Method  Air Cooling/Water Cooling
Exhaust Temperature(ºC) ≤Ambient Temperature 29571503 29571 0571 0 29571212 29571072 2906

Packaging&Shipping
packing: Neutral packing & our packing
shipping: 1-3 working days


Certification

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How Do Water-Lubricated Air Compressors Impact Compressed Air Quality?

Water-lubricated air compressors can have an impact on the quality of the compressed air they produce. Here’s a detailed explanation of how water-lubricated air compressors can affect compressed air quality:

Moisture Content:

  • Condensation: Water-lubricated compressors introduce moisture into the compressed air system. During the compression process, as the air cools downstream, moisture can condense and accumulate. This moisture can lead to issues such as corrosion, rust, and contamination of downstream equipment or processes.
  • Water Carryover: If the compressor’s water separation mechanisms are not efficient or if there are malfunctions in the water removal systems, water droplets or mist may carry over into the compressed air. This can negatively impact the quality of the compressed air and introduce moisture-related issues downstream.

Contamination:

  • Oil Contamination: In some water-lubricated compressors, there is a potential for oil to mix with the water used for lubrication. If oil and water emulsify or if there are leaks in the compressor system, oil contamination may occur. Oil-contaminated compressed air can have adverse effects on downstream processes, equipment, and products. It can lead to contamination, reduced performance of pneumatic components, and potential health and safety concerns.
  • Particulate Contamination: Water-lubricated compressors can introduce particulate matter, such as sediment, debris, or rust, into the compressed air system. This can occur if the water supply or water treatment systems are not adequately filtered or maintained. Particulate contamination can clog or damage pneumatic equipment, affect product quality, and cause operational issues in downstream applications.

Preventive Measures:

  • Water Separation: Water-lubricated compressors employ various water separation mechanisms to remove moisture from the compressed air. This includes moisture separators, water traps, or coalescing filters that are specifically designed to capture and remove water droplets or mist from the compressed air stream. Regular maintenance and inspection of these separation systems are necessary to ensure their proper functioning.
  • Air Treatment: Additional air treatment components, such as air dryers or desiccant systems, can be installed downstream of water-lubricated compressors to further reduce moisture content in the compressed air. These systems help to remove moisture that may have carried over from the compressor and ensure that the compressed air meets the required dryness standards for specific applications.
  • Proper Maintenance: Regular maintenance of water-lubricated compressors is essential to minimize the potential impact on compressed air quality. This includes routine inspection, cleaning, and replacement of filters, lubrication systems, and water separation components. Addressing any leaks, malfunctioning components, or system issues promptly can help maintain the integrity of the compressed air and prevent contamination or excessive moisture levels.

By implementing appropriate water separation mechanisms, air treatment systems, and maintenance practices, the impact of water-lubricated air compressors on compressed air quality can be minimized. It is important to consider the specific requirements of the application and follow industry standards and guidelines to ensure the desired compressed air quality is achieved.

air compressor

Are There Regulations Governing the Use of Water-Lubricated Air Compressors?

When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:

1. Occupational Safety and Health Administration (OSHA) Regulations:

OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.

2. Environmental Protection Agency (EPA) Regulations:

The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.

3. International Organization for Standardization (ISO) Standards:

The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.

4. Manufacturer Guidelines and Recommendations:

In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.

It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.

By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China supplier China Supplier 22kw 30HP Screw Air Oil Free Compressor   with Hot sellingChina supplier China Supplier 22kw 30HP Screw Air Oil Free Compressor   with Hot selling
editor by CX 2024-02-07