Product Description
| NO. | Specification | Tank (mm) | Voltage | Power(HP) | Air Flow (L/MIN) | Pressure (Bar) | Speed (RPM) | NW (KGS) | GW (KGS) | Carton (L) | Carton (W) | Carton (H) | Carton (CBM) |
| 1 | 0.036/8 51mm*1 1HP 30L | 240*520 | 220 | 1 | 36 | 8 | 1100 | 31 | 35 | 0.71 | 0.38 | 0.65 | 0.17537 |
| 2 | 0.036/8 51mm*1 1HP 40L | 280*520 | 220 | 1 | 36 | 8 | 1100 | 33 | 38 | 0.75 | 0.38 | 0.7 | 0.1995 |
| 3 | 0.12/8 51mm*2 2HP 60L | 280*750 | 220 | 2 | 120 | 8 | 985 | 53 | 62 | 0.99 | 0.43 | 0.78 | 0.332046 |
| 4 | 0.12/8 51mm*2 2HP 85L | 320*800 | 220 | 2 | 120 | 8 | 985 | 62 | 72 | 1.07 | 0.43 | 0.78 | 0.358878 |
| 5 | 0.25/8 65mm*2 3HP 100L | 350*800 | 220 | 3 | 250 | 8 | 985 | 67 | 80 | 1.1 | 0.43 | 0.83 | 0.39259 |
| 6 | 0.25/8 65mm*2 3HP 120L | 350*950 | 220 | 3 | 250 | 8 | 985 | 73 | 88 | 1.25 | 0.44 | 0.83 | 0.4565 |
| 7 | 0.25/8 65mm*2 3HP 150L | 400*1571 | 220 | 3 | 250 | 8 | 985 | 79 | 95 | 1.3 | 0.47 | 0.92 | 0.56212 |
| 8 | 0.25/8 65mm*2 3HP 200L | 450*1571 | 220 | 3 | 250 | 8 | 985 | 95 | 109 | 1.32 | 0.52 | 0.98 | 0.672672 |
| 9 | 0.36/10 65mm*3 4HP-4 200L | 450*1571 | 220 | 4 | 360 | 10 | 830 | 108 | 125 | 1.32 | 0.52 | 0.98 | 0.672672 |
| 10 | 0.36/10 65mm*3 4HP 200L | 450*1571 | 380 | 4 | 360 | 10 | 950 | 110 | 127 | 1.32 | 0.52 | 0.98 | 0.672672 |
| 11 | 0.36/8 65mm*3 4HP-4 300L | 500*1250 | 220 | 4 | 360 | 8 | 830 | 146 | 166 | 1.6 | 0.6 | 1.05 | 1.008 |
| 12 | 0.36/8 65mm*3 4HP 300L | 500*1250 | 380 | 4 | 360 | 8 | 985 | 146 | 166 | 1.6 | 0.6 | 1.05 | 1.008 |
| 13 | 0.6/12.5 90mm*1+65mm*1 5.5HP-4 300L | 500*1250 | 380 | 5.5 | 600 | 12.5 | 735 | 161 | 185 | 1.6 | 0.6 | 1.05 | 1.008 |
| 14 | 0.67/12.5 80mm*2+65mm*1 7.5HP 300L | 500*1250 | 380 | 7.5 | 670 | 12.5 | 800 | 177 | 204 | 1.6 | 0.61 | 1.12 | 1.5712 |
| 15 | 0.67/8 80mm*3 7.5HP 500L | 600*1500 | 380 | 7.5 | 670 | 8 | 835 | 220 | 260 | 1.91 | 0.71 | 1.22 | 1.654442 |
| 16 | 0.9/8 90mm*3 10HP 500L | 600*1500 | 380 | 10 | 900 | 8 | 835 | 225 | 265 | 1.91 | 0.71 | 1.22 | 1.654442 |
| 17 | 1.05/12.5 105mm*3+55mm*2 10HP-4 500L | 600*1500 | 380 | 10 | 1050 | 12.5 | 680 | 290 | 340 | 1.91 | 0.72 | 1.35 | 1.85652 |
| 18 | 1.6/12.5 100mm*2+80mm*1 15HP-4 500L | 600*1500 | 380 | 15 | 1600 | 12.5 | 660 | 355 | 405 | 1.92 | 0.72 | 1.45 | 2.00448 |
Frequency Asked Question
1.Are you the manufacturer or trading company?
We are the manufacturer.
2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
T/T,L/C at sight or cash.
5.What’s the lead time?
In 15 days on receipt of deposit .
6.Do you accept sample order?
Yes,we accept.
7.What about the cost of sample?
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-05-02
China supplier 4kw 5.5kw 7.5kw 11kw Belt OEM Screw Air Compressor China Factory Fix Speed Made for Industry arb air compressor
Product Description
Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!
Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP
Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug
Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.
Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models
SPECIFICATION
| MODEL | LG-15B-8 |
| Ambient Temperature | -5ºC to +45 ºC |
| Max Pressure (bar) | 8 |
| Air Delivery (m3/min) | 1.5 |
| Compression Stage | Single Stage Compression |
| Cooling Method | Air Cooled |
| Discharge Temperature (ºC) | ≤ 75ºC |
| Oil Cotent (ppm) | ≤3 |
| Transmission Method | Belt Driven |
| Sound Level dB(A) | 66±3 |
| Lubricating Oil Amount | 7.5L |
| Motor Power | 11KW/15HP |
| Motor Level Of Protection | IP55 |
| Voltage | 380V/3ph/50Hz |
| Dimensions (mm) | 1050×740×1150(L*W*H) |
| Weight | 225KG |
| Discharge Outlet Thread | 1/2” |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Operation Training; Maintenance |
|---|---|
| Warranty: | 2-Year-Warranty |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Installation Type: | Stationary Type |
| Samples: |
US$ 800/set
1 set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-03-28
China wholesaler High Pressure Oil Free Electric Belt Driven Rotary Screw Air Compressor manufacturer
Product Description
Industrial Low-Noise Electric Stationary AC Power Oil Lubricated Medium High Pressure Direct Driven Rotary Screw Type Air Compressor Advantages
1.Superior design with 72 types of technology patent, 2 stages compression, realize maximum energy saving and lowest noise level.
2.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
3.Adopts world-renowned components, such as Schneider electronics from
France, DENAIR filters from Germany, CHINAMFG pressure sensor from
Denmark, etc. contribute to guarantee the compressor longer service life.
4.Intelligent controller and multi-language LCD keep the outstanding safety
performance.
5.Stainless steel oil pipe and air pipe, high temperature resistant (400ºC=752ºF) and low temperature resistant(-270ºC=518ºF), high pressure resistant.lUltra-long life(80 years), completely leak free and maintenance free
6.Conform to CE, ISO9001 and energy saving certification, etc.
The Technical Parameters Of High Pressure Rotary Screw Air Compressor
| Model | Maxinmum working pressure | Capacity(FAD)* | Installed motor | Driving mode& Cooling method |
Noise level** | Dimensions(mm) | Weight | Air outlet pipe diameter |
|||||||||||
| 50 HZ | 60 HZ | power | |||||||||||||||||
| Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||||||||||||
| bar(g) | psig | m³/min | cfm | m³/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||||||
| DVAH-90-16 | 16 | 232 | 3.73 | 9.24 | 131 | 326 | 4.28 | 8.57 | 151 | 303 | 90 | 120 | Direct Driven Air Cooling /W-Water Cooling |
78 | 2800 | 1600 | 1700 | 2500 | DN50 |
| DVAH-90-18 | 18 | 261 | 4.29 | 10.73 | 151 | 379 | 5.39 | 10.78 | 190 | 381 | 90 | 120 | 78 | 2800 | 1600 | 1700 | 2500 | DN50 | |
| DVAH-90-20 | 20 | 290 | 4.24 | 10.61 | 150 | 375 | 5.33 | 10.67 | 188 | 377 | 90 | 120 | 78 | 2800 | 1600 | 1700 | 2500 | DN50 | |
| DVAH-90-25 | 25 | 363 | 4.14 | 10.35 | 146 | 365 | 4.76 | 9.51 | 168 | 336 | 90 | 120 | 78 | 2800 | 1600 | 1700 | 2500 | DN50 | |
| DVAH-110-16 | 16 | 232 | 5.32 | 13.3 | 188 | 470 | 5.81 | 11.62 | 205 | 410 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-18 | 18 | 261 | 5.78 | 14.45 | 204 | 510 | 5.58 | 11.16 | 197 | 394 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-20 | 20 | 290 | 5.73 | 14.33 | 202 | 506 | 5.38 | 10.76 | 190 | 380 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-25 | 25 | 363 | 4.86 | 12.15 | 172 | 429 | 5.28 | 10.56 | 186 | 373 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-30 | 30 | 435 | 4.95 | 12.38 | 175 | 437 | 5.15 | 10.3 | 182 | 364 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-35 | 35 | 508 | 4.24 | 10.6 | 150 | 374 | 5.1 | 10.2 | 180 | 360 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-110-40 | 40 | 580 | 4.21 | 10.53 | 149 | 372 | 5.6 | 11.2 | 198 | 395 | 110 | 150 | 78 | 2800 | 1600 | 1700 | 3200 | DN50 | |
| DVAH-132-16 | 16 | 232 | 5.35 | 13.37 | 189 | 472 | 7.25 | 14.5 | 256 | 512 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-18 | 18 | 261 | 5.81 | 14.53 | 205 | 513 | 6.5 | 12.99 | 229 | 459 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-20 | 20 | 290 | 5.75 | 14.37 | 203 | 507 | 6.42 | 12.84 | 227 | 453 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-25 | 25 | 363 | 4.87 | 12.18 | 172 | 430 | 6.23 | 12.46 | 220 | 440 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-30 | 30 | 435 | 4.97 | 12.43 | 176 | 439 | 5.25 | 10.5 | 185 | 371 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-35 | 35 | 508 | 4.26 | 10.64 | 150 | 376 | 5.2 | 10.4 | 184 | 367 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-132-40 | 40 | 580 | 4.22 | 10.56 | 149 | 373 | 5.15 | 10.3 | 182 | 364 | 132 | 175 | 78 | 2800 | 1600 | 1700 | 3950 | DN50 | |
| DVAH-160-16 | 16 | 232 | 6.17 | 15.43 | 218 | 545 | 9.39 | 18.78 | 332 | 663 | 160 | 215 | 80 | 2800 | 1600 | 2000 | 5000 | DN65 | |
| DVAH-160-18 | 18 | 261 | 6.76 | 16.91 | 239 | 597 | 9.22 | 18.43 | 325 | 651 | 160 | 215 | 80 | 2800 | 1600 | 2000 | 5000 | DN65 | |
| DVAH-160-20 | 20 | 290 | 6.66 | 16.65 | 235 | 588 | 8.07 | 16.13 | 285 | 570 | 160 | 215 | 80 | 2800 | 1600 | 2000 | 5000 | DN65 | |
| DVAH-160-25 | 25 | 363 | 5.89 | 14.73 | 208 | 520 | 7.99 | 15.97 | 282 | 564 | 160 | 215 | 80 | 2800 | 1600 | 2000 | 5000 | DN65 | |
| DVAH-185-16 | 16 | 232 | 6.55 | 16.37 | 231 | 578 | 10.3 | 20.6 | 364 | 727 | 185 | 250 | 80 | 2800 | 1600 | 2000 | 5500 | DN65 | |
| DVAH-185-18 | 18 | 261 | 7.29 | 18.21 | 321 | 643 | 10.19 | 20.37 | 360 | 719 | 185 | 250 | 80 | 2800 | 1600 | 2000 | 5500 | DN65 | |
| DVAH-185-20 | 20 | 290 | 7.2 | 18.01 | 254 | 636 | 8.81 | 17.62 | 311 | 622 | 185 | 250 | 80 | 2800 | 1600 | 2000 | 5500 | DN65 | |
| DVAH-185-25 | 25 | 363 | 7.06 | 17.65 | 249 | 623 | 8.73 | 17.45 | 308 | 616 | 185 | 250 | 80 | 2800 | 1600 | 2000 | 5500 | DN65 | |
| DVAH-200-16 | 16 | 232 | 8.68 | 21.71 | 307 | 766 | 11.94 | 23.88 | 422 | 843 | 200 | 270 | 85 | 3300 | 2000 | 2100 | 6000 | DN80 | |
| DVAH-200-18 | 18 | 261 | 10.64 | 26.61 | 376 | 940 | 11.32 | 22.64 | 400 | 799 | 200 | 270 | 85 | 3300 | 2000 | 2100 | 6000 | DN80 | |
| DVAH-200-20 | 20 | 290 | 9.7 | 24.25 | 343 | 856 | 10.69 | 21.37 | 377 | 755 | 200 | 270 | 85 | 3300 | 2000 | 2100 | 6000 | DN80 | |
| DVAH-200-25 | 25 | 363 | 8.84 | 22.09 | 312 | 780 | 9.1 | 18.19 | 321 | 642 | 200 | 270 | 85 | 3300 | 2000 | 2100 | 6000 | DN80 | |
| DVAH-220-16 | 16 | 232 | 9.75 | 24.37 | 344 | 860 | 12.17 | 24.34 | 430 | 859 | 220 | 300 | 85 | 3300 | 2000 | 2100 | 6300 | DN80 | |
| DVAH-220-18 | 18 | 261 | 12.13 | 30.32 | 428 | 1070 | 11.84 | 23.67 | 418 | 836 | 220 | 300 | 85 | 3300 | 2000 | 2100 | 6300 | DN80 | |
| DVAH-220-20 | 20 | 290 | 10.56 | 26.39 | 373 | 932 | 11.21 | 22.42 | 396 | 792 | 220 | 300 | 85 | 3300 | 2000 | 2100 | 6300 | DN80 | |
| DVAH-220-25 | 25 | 363 | 9.6 | 24.01 | 339 | 848 | 10.47 | 20.94 | 370 | 739 | 220 | 300 | 85 | 3300 | 2000 | 2100 | 6300 | DN80 | |
| DVAH-250-16 | 16 | 232 | 10.7 | 26.75 | 378 | 944 | 14.07 | 28.13 | 497 | 993 | 250 | 350 | 85 | 3500 | 2200 | 2100 | 6500 | DN125 | |
| DVAH-250-18 | 18 | 261 | 12.13 | 30.32 | 428 | 1070 | 14 | 27.99 | 494 | 988 | 250 | 350 | 85 | 3500 | 2200 | 2100 | 6500 | DN125 | |
| DVAH-250-20 | 20 | 290 | 12.07 | 30.16 | 426 | 1065 | 12.95 | 25.89 | 457 | 914 | 250 | 350 | 85 | 3500 | 2200 | 2100 | 6500 | DN125 | |
| DVAH-250-25 | 25 | 363 | 10.45 | 26.13 | 369 | 923 | 12.45 | 24.9 | 440 | 879 | 250 | 350 | 85 | 3500 | 2200 | 2100 | 6500 | DN125 | |
| DVAH-280-16 | 16 | 232 | 12.55 | 31.38 | 443 | 1108 | 16.51 | 33.02 | 583 | 1166 | 280 | 375 | 85 | 3500 | 2200 | 2100 | 7000 | DN125 | |
| DVAH-280-18 | 18 | 261 | 14.99 | 37.47 | 529 | 1323 | 14.84 | 29.68 | 524 | 1048 | 280 | 375 | 85 | 3500 | 2200 | 2100 | 7000 | DN125 | |
| DVAH-280-20 | 20 | 290 | 14.84 | 37.09 | 524 | 1310 | 14.69 | 29.38 | 519 | 1037 | 280 | 375 | 85 | 3500 | 2200 | 2100 | 7000 | DN125 | |
| DVAH-280-25 | 25 | 363 | 12.37 | 30.93 | 437 | 1092 | 12.69 | 25.38 | 448 | 896 | 280 | 375 | 85 | 3500 | 2200 | 2100 | 7000 | DN125 | |
| *) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C **) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A) ***) Specifications are subject to change without prior notice |
|||||||||||||||||||
DENAIR Factory
DENAIR Certificates
DENAIR Exhibiton
DENAIR Customers
We carefully selected for you the classic case:
CHINAMFG VSD Screw Air Compressor for Food Processing in USA
Project Name: Coffee manufacturer in Omaha, United States
Product Name: 30KW 40HP direct dirven variable frequency screw air compressor with air dryer and air receiver tank
Model No. & Qty: DVA-30G x 2
Working Time: From January, 2016 till now
Event: In January, 2016, CHINAMFG service team Michael, Sissi and Steven visited our VIP customer in Omaha, United States for technical training for air compressor maintenance. The customer was very satisfied with our good service and VSD energy saving solution.
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-07
China Standard 15 HP 11kw 7-13bar Belt Driven Electric Rotary Screw Air Compressor Price with Hot selling
Product Description
15 hp 11kw 7-13bar Belt Driven Electric Rotary Screw Air Compressor Price
Main Features:
1. The flexible belt will be automatically tensioned in use. Through adjusting the tension, minimize the loss of pressure and power, to enhance the efficiency of compression.
2. Using the precise spin-oil separator and special two-pole buffer separation, it can minimize the oil consumption, guarantee the outlet gas purity, and extend the lifetime of filter elements.
3. With the toothed V-belt, it has good heat dissipation, long life, higher gear drive and transmission efficiency, as high as over 98%.
Oil Filter: Good Quality filters ensure longer working life and save the maintenance time and cost.
Stainless Steel Hoses: High and low temperature resistant, high pressure resistant.
Compressed Air Vessel: Reduction of pressure drops and energy costs, quality air with low oil content.
Air End: Imported DLOL air end, advanced profile design.
Electric Motor: Premium efficiency Totally TEFC IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.
Air Filter: Two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environment.
Cooler: High quality aluminum material, alternating expression cooler fins, ensure the perfect radiating effect.
Technical parameters:
Our workshop:
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-02-07
China Good quality Made in China Belt Driven Screw Industrial Air Compressor 154 Kw Screw Cooling Air Compressor portable air compressor
Product Description
Product Parameters
|
LGZJ-31/25-35/18 |
|
|
Pressure (MPa) |
2.5 ~ 1.8 |
|
Air displacement (m3/min) |
31 ~ 35 |
|
Diesel Engine Power (HP) |
Yuchai: 400 |
|
Air outlet size |
G2 * 1,G3/4*1 |
|
Weight (kg) |
4100 |
|
Dimensions (mm) |
3650*2000*2200 |
|
Model of a diesel screw air compressor in a water well |
Exhaust pressure |
Air Freight |
Engine Power |
Exhaust outlets |
Weight |
Dimensions |
|
KSZJ-15/15 |
15 |
15 |
CHINAMFG 190 horsepower |
G2 * 1,G3/4*1 |
2100 |
2600*1520*1800 |
|
KSZJ-18/17A |
17 |
18 |
CHINAMFG 220 horsepower |
G2 * 1,G3/4*1 |
2200 |
2800*1520*1780 |
|
KSZJ-18/17 |
17 |
18 |
CHINAMFG 260 horsepower |
G2 * 1,G3/4*1 |
2700 |
3050*1800 |
|
KSZJ-29/23G |
23 |
29 |
CHINAMFG 400 horsepower |
G2 * 1,G3/4*1 |
4050 |
3500*1950*2030 |
|
KSZJ-29/23-32/17 |
17-23 |
29-32 |
CHINAMFG 400 horsepower |
G2 * 1,G3/4*1 |
4050 |
3500*1950*2030 |
|
LGZJ-31/25-35/18 |
18-25 |
31-35 |
CHINAMFG 400 horsepower |
G2 * 1,G3/4*1 |
4100 |
3650*2000*2200 |
|
LGZJ-35/25-38/20 |
20-25 |
35-38 |
CHINAMFG 550 horsepower |
G2 * 1,G3/4*1 |
4500 |
3500*1950*2320 |
|
LGZJ-35/25-38/20K |
20-25 |
35-38 |
550 horsepower |
G2 * 1,G3/4*1 |
4500 |
3500*1950*2200 |
|
LGZJ-36/30-41/20 |
20-30 |
36-41 |
CHINAMFG 560 horsepower |
G2 * 1,G3/4*1 |
6000 |
3800*2160*2300 |
|
LGZJ-36/30-41/20K |
20-30 |
36-41 |
550 horsepower |
G2 * 1,G3/4*1 |
5800 |
3800*2160*2330 |
|
LGZJ-30/35-35/25 |
25-35 |
30-35 |
CHINAMFG 560 horsepower |
G2 * 1,G3/4*1 |
6000 |
3800*2160*2300 |
|
LGZJ-30/35-35/25K |
25-35 |
30-35 |
550 horsepower |
G2 * 1,G3/4*1 |
5800 |
3800*2160*2330 |
|
LGCG-43/25-37/35 |
25-35 |
43-35 |
CHINAMFG 775 horsepower |
G2 * 1,G3/4*1 |
7000 |
4160*2200*2257 |
Product Description
SKY screw mainframe
Designed according to the pressure of 40bar: rotor profile, high efficiency, flexible design corresponding to the lifting valve, heavy duty design, bearing, better design, high reliability
Heavy-duty diesel engine
Supporting Yuchai, other countries 3 heavy-duty diesel engines. Achieve engine operation within the full range of combustion state. The product has higher reliability, stronger power, and better fuel economy
Computer control system
The whole process displays operating parameters such as running speed, gas supply pressure, oil pressure, exhaust temperature, coolant temperature, and fuel level. With self-diagnosis fault, alarm and shutdown functions, to ensure the safe operation of the machine when unattended.
Cooling system of
The new results of the North American research and development center ensure that the compressor is always in the running state. The vertical oil, water and air coolers with large diameter fans are designed to adapt to cold and hot weather.
Triple filtration system
Air filtration system: Patented, maintenance-free centrifugal air prefilter filters more than 90% of dust and impurities, so that the filter element maintenance and replacement cycle is extended by 5 times; The precision filter layer of the cyclone main air filter removes the remaining dust to ensure that the machine does not wear out, and the safety filter element can make the machine do not stop the air filter maintenance to ensure the safe operation of the machine. Suitable for continuous operation in desert, dusty and other harsh environment;
Oil and gas separation system: reduce the impact of too much or too little oil injection of the separator on the oil content of the compressed air, and always keep the oil content of the compressed air below 3ppm;
Lubricating oil filter with accuracy of 10 microns: ensures minimal wear on running parts. Multiple fuel filters protect the reliability of the engine fuel injection system.
Wheel belt chassis can be added
It can be customized as a 4-wheel portable screw air compressor.
Other Product
Water Well Drilling Rig
Drill Truck
Core Drilling Rig
Air compressor
Company Profile
Wanhai Machinery Co., Ltd., situated in HangZhou, ZheJiang , is a reputable manufacturer specializing in the design, development, production, and distribution of top-notch drilling machinery and equipment. Our extensive product range encompasses a variety of drilling rigs, including oil and gas drilling rigs, water well drilling rigs, core drilling rigs, and more, catering to diverse drilling tasks and scenarios. Our unwavering commitment lies in delivering exceptional products and services that are tailored to meet the specific requirements of each customer. We take pride in our dedicated after-sales team, who promptly and effectively address any concerns or issues that may arise, ensuring utmost customer satisfaction.
We eagerly anticipate establishing enduring, reliable, and mutually beneficial relationships with every customer we serve. Should you express interest in our products, please do not hesitate to reach out to us. We assure you that our team will provide you with the necessary information and assistance to make an informed decision.
At Wanhai Machinery Co., Ltd., we prioritize quality and innovation in all aspects of our operations. Our state-of-the-art manufacturing facilities, coupled with our team of experienced professionals, enable us to consistently deliver drilling machinery and equipment of the highest standards. We stay abreast of the latest technological advancements in the industry, ensuring that our products are at the forefront of efficiency and performance. Furthermore, we understand that each drilling project comes with its unique set of challenges and requirements. Therefore, we offer customized solutions to cater to the specific needs of our customers.
Foreign customer
FAQ
1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.
2.How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.
3.How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 25-30 days.
4. What’s your terms of payment?
T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Technical Services |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-01-02