Product Description
REDUCE ENERGY CONSUMPTION
Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE
CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade
AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.
CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.
7 INCH TOUCH SCREEN
Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.
HIGH MOBILITY (OPTIONAL)
Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)
ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
Dukas has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.
The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.
Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
Dukas air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
Dukas products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!
Frequency Asked Question:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.
| After-sales Service: | 24 Hours |
|---|---|
| Warranty: | 2 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2023-10-19
China Standard Manufacturer Output 2V-3.5/5 Piston Air Compressors for Industrial air compressor parts
Product Description
Product Description
Advantages of piston type air compressor: high effiency, long service life .
We also sell piston air compressor spare parts
Product Parameters
| model | motor power | cylinder qty*mm | rotation speed r/min | FAD m3/min | working pressure | dimension L*W*H mm | weight KGS |
| w-1.8/5 | S1100*11KW | 3*Φ100 | 1200 | 1.8 | 0.5(5) | 1500*600*950 | 300 |
| w-2.8/5 | S1100*15KW | 3*Φ115 | 1120 | 2.6 | 0.5(5) | 1670*820*1150 | 450 |
| w-3.0/5 | S1115*18.5KW | 3*Φ120 | 1070 | 3 | 0.5(5) | 1880*870*1230 | 460 |
| w-3.2/7 | S1125.18.5KW | 3*Φ125 | 800 | 3.7 | 0.7(7) | 1910*800*1620 | 530 |
| w-3.5/5 | S1125.18.5KW | 3*Φ125 | 1170 | 3.5 | 0.5(5) | 1880*870*1240 | 460 |
| sf4.0/5 | S1130*22KW | 4*Φ120 | 1070 | 4 | 0.5(5) | 1960*860*1300 | 655 |
| 2v-3.5/5 | S1125*18.5KW | 4*Φ115 | 980 | 3.5 | 0.5(5) | 1800*950*1300 | 650 |
| 2v-4.0/5 | S1130*22KW | 4*Φ120 | 980 | 4.0 | 0.5(5) | 1800*950*1300 | 750 |
Packaging & Shipping
Delivery method: By sea, by Air, by international express service (Fedex, DHL, UPS and etc)
We will ship according to the order quantity of the goods and the demands of the customers .
Certifications
Our goods all have high quality that can be passed CO,PVOC ,FERI,SUNCAP and other quality certification .
Exhibition
The product quality is qualified ,and the inferior products are rejected
Contact us
| After-sales Service: | Online Service for 2 Years |
|---|---|
| Warranty: | 1 Years |
| Cooling System: | Water Cooling |
| Samples: |
US$ 495/Piece
1 Piece(Min.Order) | Order Sample Same as the picture
|
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-10-19
China supplier Oil Free Air Compressor for 15L Oxygen Generator lowes air compressor
Product Description
| Model | BST800/3-140AF |
| Rated Voltage (V) | 220-240V/50Hz or 380-400v/50hz |
| Input power(W) | ≤800 |
| Speed (r/min) | ≥1350 |
| Rated pressure (KPa) | 200KPa |
| Max pressure(KPa) | 400KPa |
| Restart pressure (KPa) | 0KPa |
| Rated volume flow (m3/h) | ≥9.0m3/h@200KPa ≥8.4m3/h@300KPa |
| Noise dB(A) | ≤626B(A) |
| Ambient temperature ºC | -20~50ºC |
| Insulation Class | F |
| Cold insulation resistance (MΩ) | ≥100MΩ |
| Voltage resistance | 1500V/50Hz 1min (no break down) |
| Thermal protector | Automatic reset 155±5ºC |
| Capacitance (μF) | 25μF±5% |
| Net weight (Kg) | 13.5Kg |
| Installation Dimensions (mm) | 215×127 mm(4XM8) |
| External Dimensions (mm) | 255×165×250 mm |
| Oxygen generator | 15L |
| Typical application | |
| Respirator (ventilator) | oxygenerator |
| Disinfectant sprayer | Blood analyzer |
| Clinical aspirator | Dialysis / hemodialysis |
| Dental vacuum drying oven | Air suspension system |
| Vending machines / coffee blenders and coffee machines | Massage chair |
| Chromatographic analyzer | Teaching instrument platform |
| On board access control system | Airborne oxygen generator |
Why choose CHINAMFG air compressor
1. It saves 10-30% energy than the air compressor produced by ordinary manufacturers.
2. It is widely used in medical oxygen generator and ventilator .
3. A large number of high-speed train and automobile application cases, supporting – 41 to 70 ºC, 0-6000 CHINAMFG above sea level .
4. Medium and high-end quality, with more than 7000 hours of trouble free operation for conventional products and more than 15000 hours of trouble free operation for high-end products.
5. Simple operation, convenient maintenance and remote guidance.
6. Faster delivery time, generally completed within 25 days within 1000 PCs.
Machine Parts
Name: Motor
Brand: COMBESTAIR
Original: China
1.The coil adopts the fine pure copper enameled wire, and the rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.
2.The customer can choose the insulation grade B or F motor according to What he wants.
3.The motor has a built-in thermal protector, which can select external heat sensor.
4.Voltage from AC100V ~120V, 200V ~240V, 50Hz / 60Hz, DC6V~200V optional ; AC motor can choose double voltage double frequency ; DC Motor can choose the control of the infinitely variable speed.
Machine Parts
Name: Bearing
Brand: ERB , CHINAMFG , NSK
Original: China ect.
1.Standard products choose the special bearing ‘ERB’ in oil-free compressor, and the environment temperature tolerance from -50ºC to 180 ºC . Ensure no fault operation for 20,000 hours.
2.Customers can select TPI, NSK and other imported bearings according to the working condition.
Machine Parts
Name: Valve plates
Brand: SANDVIK
Original: Sweden
1.Custom the valve steel of Sweden SANDVIK; Good flexibility and long durability.
2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.
Machine Parts
Name: Piston ring
Brand: COMBESTAIR-OEM , Saint-Gobain
Original: China , France
1.Using domestic famous brand–Polytetrafluoroethylene composite material; Wear-resistant high temperature; Ensure more than 10,000 hours of service life.
2.High-end products: you can choose the ST.gobain’s piston ring from the American import.
| serial number |
Code number | Name and specification | Quantity | Material | Note |
| 1 | 212571109 | Fan cover | 2 | Reinforced nylon 1571 | |
| 2 | 212571106 | Left fan | 1 | Reinforced nylon 1571 | |
| 3 | 212571101 | Left box | 1 | Die-cast aluminum alloy YL104 | |
| 4 | 212571301 | Connecting rod | 2 | Die-cast aluminum alloy YL104 | |
| 5 | 212571304 | Piston cup | 2 | PHB filled PTFE | |
| 6 | 212571302 | Clamp | 2 | Die-cast aluminum alloy YL102 | |
| 7 | 7050616 | Screw of cross head | 2 | Carbon structural steel of cold heading | M6•16 |
| 8 | 212571501 | Air cylinder | 2 | Thin wall pipe of aluninun alloy 6A02T4 | |
| 9 | 17103 | Seal ring of Cylinder | 2 | Silicone rubber | |
| 10 | 212571417 | Sealing ring of cylinder cover | 2 | Silicone rubber | |
| 11 | 212571401 | Cylinder head | 2 | Die-cast aluminum alloy YL102 | |
| 12 | 7571525 | Screw of inner hexagon Cylinder head | 12 | M5•25 | |
| 13 | 17113 | Sealing ring of connecting pipe | 4 | Silicong rubber | |
| 14 | 212571801 | Connecting pipe | 2 | Aluminum and aluminum alloy connecting rod LY12 | |
| 15 | 7100406 | Screw of Cross head | 4 | 1Cr13N19 | M4•6 |
| 16 | 212571409 | Limit block | 2 | Die-cast aluminum alloy YL102 | |
| 17 | 000402.2 | Air outlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
| 18 | 212571403 | valve | 2 | Die-cast aluminum alloy YL102 | |
| 19 | 212571404 | Air inlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
| 20 | 212571406 | Metal gasket | 2 | Stainless steel plate of heat and acidresistance | |
| 21 | 212571107 | Right fan | 1 | Reinforced nylon 1571 | |
| 22 | 212571201 | Crank | 2 | Gray castiron H20-40 | |
| 23 | 14040 | Bearing 6006-2Z | 2 | ||
| 24 | 70305 | Tighten screw of inner hexagon flat end | 2 | M8•8 | |
| 25 | 7571520 | Screw of inner hexagon Cylinder head | 2 | M5•20 | |
| 26 | 212571102 | Right box | 1 | Die-cast aluminum alloy YL104 | |
| 27 | 6P-4 | Lead protective ring | 1 | ||
| 28 | 7095712-211 | Hexagon head bolt | 2 | Carbon structural steel of cold heading | M5•152 |
| 29 | 715710-211 | Screw of Cross head | 2 | Carbon structural steel of cold heading | M5•120 |
| 30 | 16602 | Light spring washer | 4 | ø5 | |
| 31 | 212571600 | Stator | 1 | ||
| 32 | 70305 | Lock nut of hexagon flange faces | 2 | ||
| 33 | 212571700 | Rotor | 1 | ||
| 34 | 14032 | Bearing 6203-2Z | 2 |
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our factory is located in Linbei industrial area No.30 HangZhou City of ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: Generally, 1000 pcs can be delivered within 25 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
Q7:Can you accept non-standard customization?
A7:We have the ability to develop new products and can customize, develop and research according to your requirements
| After-sales Service: | Remote Guided Maintenance |
|---|---|
| Warranty: | 2 Years |
| Principle: | Mixed-Flow Compressor |
| Samples: |
US$ 60/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
How does a water lubrication system work in air compressors?
A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:
1. Water Injection:
In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.
2. Lubrication:
As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.
3. Cooling:
The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.
4. Separation and Filtration:
After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.
5. Water Treatment:
In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.
6. Recirculation or Discharge:
Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.
By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.


editor by CX 2023-10-19
China high quality Hochey Medical Dental Equipment Silent Oil Free Dental Air Compressor 12v air compressor
Product Description
Certifications
Company Profile
We are professional manufacturer of medical equipment for 20 years.
Our products include operation lamp, operation table, ceiling pendant, hospital bed, patient monitor, medical stretcher, medical cabinet, medical trolley and vets instruments CE, FDA, TUV, ISO Certifications are available.
After Sales Service
We supply 24hours aftersales service
1.Technical support and guide
2.Free spare parts
3.Warranty:2years
Payment term:
| Payment Term | T/T | EXW | 30% TT in advance, paid the balance before shipment |
| FOB/FCA | |||
| CNF | |||
| CIF | |||
| DDU/DAP | |||
| L/C | L/C amount above 50,000 USD, we can accept L/C at sight | ||
| West Union | Amount lower than 5000usd | ||
| Delivery Time | 3~5days after receiving the payment | ||
FAQ
Q: Are you manufacturer ?
A: Yes,we have our own R&D team and sales team,We provide you one-stop service.
Q: Do you have CE,ISO13485?
A: Yes,our products are approved by CE,ISO13485
Q: Is OEM &ODM available in your factory ?
A: Yes, you just offer us necessary documents and then we will produce the products as your requirements.
Q: What is your Payment term?
A: 1.L/C at sight;
2.T/T:30% deposit by T/T,70%balance by T/T before shipment
3.Trade term:EXW, FOBZheJiang or CIF&CFR
Q: What is your Packing details?
A: 1.Wooden case or carton package,standard export packages
2.All of the productions are inspected carfully by QC before delivery.
Q: What is your Delivery time?
A: Usually, we make merchandise inventory, if we have the products in stock,The delivery time is5-10 days after receiving the deposit; If we don’t have the products in stock, we will arrange the production right now, the delivery time will be 20-30days,It depends on the quantity of order
Q: What is your Min.order?
A: There’s no minimum quantity
| Certification: | CE |
|---|---|
| Air Flow: | 118L/Min at 0bar |
| Speed: | 1400/1750 r.p.m |
| Max Pressure: | 8bar |
| Noise Level: | 52dB |
| Brand Name: | Hochey Medical |
| Samples: |
US$ 250/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can Water-Lubricated Air Compressors Be Used in Cold Climates?
Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates:
Freezing of Water:
- Potential for Freezing: In cold climates, the water used for lubrication in water-lubricated compressors can freeze, which can cause operational issues and damage to the equipment. Freezing can occur in the water supply lines, lubrication system, or water jackets if the temperature drops below the freezing point of water.
- Water Temperature: It is important to ensure that the water temperature remains above freezing throughout the compressor system. This can be achieved by using insulation, heat tracing, or heaters to maintain adequate water temperature. Monitoring the water temperature and implementing appropriate heating measures are crucial to prevent freezing-related problems.
Protection and Insulation:
- Protecting External Components: External components of water-lubricated compressors, such as valves, fittings, and pipes, may be exposed to cold temperatures. Insulating these components can help prevent freezing and ensure their proper functioning. Insulation materials, such as foam wraps or heat tapes, can be used to provide thermal protection.
- Water Supply Lines: Water supply lines that feed the compressor should be properly insulated and protected from freezing temperatures. Insulation can help maintain the water temperature and prevent freezing within the supply lines. Additionally, measures such as burying the supply lines below the frost line or using heat tracing cables can offer further protection against freezing.
Alternative Lubrication Methods:
- Oil-Lubricated Compressors: In extremely cold climates, where freezing is a significant concern, using oil-lubricated compressors instead of water-lubricated ones may be a more practical option. Oil-based lubrication systems are less prone to freezing and can provide reliable operation in colder temperatures. However, it is important to consider the specific requirements and limitations of oil-lubricated compressors for the intended application.
Manufacturer Recommendations:
- Consulting the Manufacturer: It is crucial to consult the manufacturer’s guidelines and recommendations regarding the use of water-lubricated compressors in cold climates. Manufacturers may provide specific instructions, modifications, or alternative solutions to ensure the safe and efficient operation of their equipment under cold weather conditions.
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?
Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:
- Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
- Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
- Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
- Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
- Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
- Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.
Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.


editor by CX 2023-10-19
China wholesaler Wholesale Heavy Duty DC12V 220W Portable Car Air Compressor with high quality
Product Description
Mini car air compressor is perfect when unexpected roadside emergency happens. It is ideal for inflating car and bicycle tires, sports ballsand other inflating jobs. Our item is very easy to use. Just plug into your car cigarette lighter for power and slip the universal adapter over anytire valve and you are ready to inflate!
Specifications:
Main material: ABS + Copper + PP
Product size: 24×8.5x19cm
Product color: black + Silver
voltage:DC12V
Current:20A
Rated power: 220W
cylinder diameter:Φ 2x30mm
Rated pressure:100psi
Outflow:45L/min
Steel sheet: 88pcs
Inflate Time:approx 2min (0psi~30psi)
Fuse: glass tube fuse
Air hose: 70CM
Power cord length:3.65m
Accessories: 600D Oxford bag, fuse, 3 accessories,pu hose,battery clamp, instruction, color box
Packing: Color box
Qty/Ctn: 1pc/box, 6pcs/ctn
Ctn size: 44x37x55.5cm
G.W/N.W: 27/26KG
Anma Group was established in HangZhou city ZHangZhoug province in 1992, subsidiary Corporation ZheJiang Anma Industrial Co., Ltd. was established in 2003 and mainly responsible for research and development of automotive supplies, domestic and foreign sales. ZheJiang branchhavea young team, full of vitality, good at learning, keep making progress.
Anma Group established its representative offices in USA, Italy and Dubai, in addition to its three factories: ZHangZhoug HangZhou factory covering an area of 258 acres, manufacturing Car interior and exterior decoration products; ZheJiang factory covering an area of 120 acres, specialized in manufacturing auto parts series products, shock absorber and fuel pump products are SAIC-GM, HAFEI AUTOMOBILE designated supporting products; HangZhou factory covering an area of 68 acres, manufacturing automotive electronics products. More than 80% of our products are for export, listed in the key supporting export enterprises.
Anma industry is professional in the manufacture and sale of automotive supplies, automotive modified parts, auto parts. Products are exported to Europe and the United States, the Middle East, Southeast Asia, more than 40 countries and regions, currently has more than 350 agents and co-clients, mainly supply include AUTOZONE, TESCO, K-MART, ALDI, BDK, SUPERCHEAP and other internationally renowned chain stores, export business is growing. 2018 the company’s total export business amount over $86 million(about RMB650million). Group companies provide customers with convenient, fast, quality service as the principle, successively set up branches in HangZhou, HangZhou, HangZhou, HangZhou, HangZhou and other domestic cities, provide first-class quality service for customer. The company headquarters has large automotive supplies stores, directly provide professional services for the local and surrounding customers.
Group companies through the stable quality, reliable reputation and customer first principle to get the support of customers. Company’s purpose: people assets, customer oriented, Integrity first! Company’s philosophy: mutual benefit, develop together! Company’s direction: develop quality products, adhere to brand strategy, regulate the sales market. If the Anma Group is a large ship, the staff gathered from all corners of the globe are the water to carry the ship, the customer is the wind to promote the Anma Group sail forward. Anma Group knows that only share fate with employees and pursue with customers, can the company ride the wind and waves continue to move forward. Good business needs good talent, good people are eager to join a good team. In the process of Anma Group’s excellent competitiveness in the field of automotive supplies, we needs strong human resources guarantee; Inthe journey of realizing personal values and promoting career, we expect to be with you.
| Cylinder Stage: | Double Stages |
|---|---|
| Pressure after Air Exhaust: | 100psi |
| MOQ: | 1000 |
| Power Supply: | DC12V/24V |
| Production Time: | 25-30 Days |
| Sample: | Available |
| Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-10-18
China Standard 1.5kw New Model Oil-Free Air Compressor Potable Quiet Silent 50L Air Compressor 1500W 2HP portable air compressor
Product Description
Specification:
| Item | AC-OF-50L |
| Power | 1500W/2HP |
| Pressure | 8Bar/115PSI |
| Capacity | 50L |
| Voltage | 220V/50HZ |
| Speed | 1440RPM |
| Weight | 37KGS |
| Dimension(L*W*H) | 70*34*62CM |
FAQ:
1. Are you a manufacturer or trading company?
We are a professional manufacturer of high pressure washer, vacuum cleaner and floor scrubber.
2. What’s your advantage?
We have over 15 years experience, our products have passed the certification of ISO9001,CE,GS ,ETL and multiple patent certificates.
3. How do you confirm your quality?
A:Rich experience on weakness may appear on every components and products;
B:Sample checking before order and bulk sample reserved in warehouse for after-sale service.
4. Is it acceptable to use self-label brand?
Yes, we provide OEM products, also welcome ODM orders.
5. What is your payment terms?
T/T and L/C. Normally T/T 30% deposit, 70% balance should be paid against the B/L copy. Better payment terms for regular esteemed customers.
6. What is your company’s production capacity every year?
We have over 500,000 pcs production capacity every year.
7. Is sample available for my reference before final order?
Yes, we can provide sample for you. Please contact with our service staff.
How To Contact Us:
Send your Inquiry Details in the Below for it, Click ↓ “Send Now” ↓
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-free |
| Samples: |
US$ 300/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-10-18
China high quality Highly Competitive Prices Lower Noise Fiber Laser Cutting Air Compressor air compressor for car
Product Description
Product Features
·High reliability, fewer parts and no wearing parts, so it runs reliably, has a long life, and the interval between overhauls can reach 40,000 to 80,000 hours.
·Convenient operation and maintenance. The CHINAMFG has a high degree of automation, and the operator does not need to go through long professional training, and can realize unattended operation.
·Space saving and cost saving.
·Structure Compactness, low noise.
·Build-in good quality refrigeration air dryer. ·Energy saving and high efficiency.
·Cutting gas for laser cutting machine.
Product Parameter
| Name | Air Compressor For Laser Cutting Machine |
| Model | B-15 |
| Power | 15KW/20HP |
| Rotating Speed | 2930r/min |
| Cooling Method | Air / Water |
| Working Pressure | 1.58Mpa 15.8bar |
| Voltage Frequency | 380V 50HZ |
| Air Tank Capacity | 350L |
| Size | 1900*700*1650mm |
| Weight | 560KG |
FAQ
1.Who we are?
A:We are based in ZheJiang , China, start from 2011,sell to Southeast Asia(20.00%),Eastern Europe(20.00%), WesternEurope(10.00%), North America(10.00%), Northern Europe(5.00%), Central America(5.00%),SouthAmerica(5.00%),Eastern Asia(5.00%),South Asia(5.00%),Oceania(5.00%),Southern Europe(5.00%),Africa(3.00%),MidEast(2.00%). There are total about 11-50 people in our office.
2.Which payment terms you can accept?
A: We can accept flexible payment include Bank Transfer, LC, DP, West Union, Paypal, or Combination terms as negotiation.
3.Which shipping way can you provide?
A: We can provide shipping by sea, by air , by express and etc according to customer requirements.
4.How to place order?
A: When you are ready to order, please contact us for confirm the suitable solution & plan & model. What cannot be ignored is you should provide a copy purchase order to ensure that your order is processed properly.
5.Do you have an inspection procedure for the product?
A: Yes, We have a strict inspection of product qualityand packing.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-10-18
China supplier 130lpm 2bar Oil Free Air Compressor 550W for 10liter Medical Oxygen Concentrator arb air compressor
Product Description
Product Parameter
|
ITEM NO |
GLE550A-1 |
|
Name |
Air compressor |
|
Packing |
2 Layers Carton Box + Wooden Pallet |
|
Weight |
10.4 kg |
|
Dimension |
240*113*200 mm |
|
Installation size |
89*203 mm (4*M6) |
|
Technical Specification |
Voltage : 220V 50Hz |
| After-sales Service: | on Line Support and Free Spare Parts |
|---|---|
| Warranty: | Two Years |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Duplex Arrangement |
| Cylinder Position: | Two Air Compressor |
| Samples: |
US$ 85/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
Can Water-Lubricated Compressors Be Integrated into Existing Systems?
Yes, water-lubricated compressors can be integrated into existing systems, but certain considerations need to be taken into account. Here’s a detailed explanation of integrating water-lubricated compressors into existing systems:
Space and Compatibility:
- Physical Space: Before integrating a water-lubricated compressor into an existing system, it’s important to assess the available physical space. Water-lubricated compressors may require additional components such as water pumps, filters, and separators, which need to be accommodated within the existing system layout.
- Compatibility: Compatibility between the water-lubricated compressor and the existing system is crucial. Factors such as pressure ratings, flow rates, electrical requirements, and control systems should be evaluated to ensure a seamless integration. It may be necessary to make modifications or upgrades to the existing system to achieve compatibility.
Water Supply:
- Water Source: Integrating a water-lubricated compressor requires a suitable water source. The availability of a clean and reliable water supply should be assessed. The water source can be from a municipal water supply, a well, or other water storage systems depending on the specific requirements of the compressor.
- Water Treatment: If the existing water supply does not meet the necessary quality standards for the water-lubricated compressor, water treatment systems may need to be installed. Water treatment can involve filtration, softening, or chemical treatment to ensure the water is clean and suitable for lubrication.
Installation and Configuration:
- Professional Installation: Integrating a water-lubricated compressor into an existing system typically requires professional installation. Qualified technicians or engineers with experience in water-lubricated compressors should handle the installation process to ensure proper configuration and alignment with the existing system.
- Piping and Connections: The installation may involve connecting the water-lubricated compressor to the existing piping system. Proper sizing, materials, and connections should be used to maintain the integrity of the system and prevent leaks or pressure losses.
System Performance and Optimization:
- System Evaluation: After integrating the water-lubricated compressor, it’s important to evaluate the overall performance of the system. This includes assessing the compressor’s efficiency, lubrication effectiveness, cooling capacity, and any potential impacts on the existing components.
- System Adjustments: Depending on the findings of the system evaluation, adjustments or fine-tuning may be necessary to optimize the performance of the integrated water-lubricated compressor. This can involve adjusting operating parameters, control settings, or making additional modifications to enhance system efficiency and reliability.
Overall, integrating water-lubricated compressors into existing systems is possible with proper planning, evaluation, and professional installation. Considering factors such as space availability, compatibility, water supply, installation requirements, and system optimization will help ensure a successful integration and the effective operation of the water-lubricated compressor within the existing system.
.webp)
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.


editor by CX 2023-10-18
China factory Made in China 3.4kw 120L Portable silent Piston Oil Free Air Compressor portable air compressor
Product Description
Product Description
Features
1. The machine is light, easy to carry.
2. Without refueling in use process, low energy consumption, simple maintenance and low cost.
3. The machine little vibration, low noise
4. Compared with similar machines, the air charging time is faster and the work is reliable.
5. Suitable for food, medical treatment, woodworking decoration, scientific research institutions, and compressed gas as a power source in the field.
Product Parameters
| Model | HB12 | HB30 | HB35 | HB50 | HB70A | HB90A | HB120 | HB200 |
| Input power (KW) |
0.68 | 0.75 | 0.85 | 1.5 | 1.36 (0.68*2) |
2.04 (0.68*3) |
3.4 (0.85*4) |
5.1 (0.85*6) |
| Voltage (V/Hz) | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 | 220/50 |
| Current (A) | 2.8 | 3.0 | 3.8 | 6 | 6.8 | 9.0 | 13 | 20 |
| Rotate speed (rpm/min) | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 |
| Air Intake (L/min) | 116 | 128 | 150 | 180 | 256 | 580 | 720 | 950 |
| Exhaust pressure(Mpa) | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 |
| Noise (db(A)) | 66 | 66 | 68 | 71 | 71 | 73 | 85 | 85 |
| Volume (L) | 12 | 30 | 35 | 50 | 70 | 90 | 160 | 200 |
| Weight (KG) | 18 | 23 | 26 | 39 | 43 | 69 | 105 | 150 |
| Dimensions (CM) | 53*23*55 | 54*30*56 | 64*32*61 | 70*30*65 | 70*35*70 | 100*35*70 | 120*41*75 | 150*45*85 |
Detailed Photos
Packaging & Shipping
Company Profile
Founded in 1997, our factory has become 1 of the most powerful air compressor equipment and engineering drilling equipment manufacturers in China, and is a member of the national compressor industry association, drilling machinery and pneumatic tools industry association, and a drafting unit of national standards. All the products have passed the quality system certification of ISO9001:2000 and national inspection-free products.
Its total registered capital of 245 million yuan, holding 10 subsidiaries, is a set of technology research and development, production and manufacturing, sales and service functions in 1 of the modern machinery and equipment manufacturing enterprises, the enterprise covers an area of 31000m2. The group has more than 1100 employees, including more than 100 middle and senior technical personnel. The group has established close cooperative relations with many domestic famous universities and other scientific research institutes, with strong product research and development capabilities.
Now as the main exporter of drilling rigs and air compressors equipment in China. It has exported to more 60 countries such as Southeast Asia, South America, Africa, Eastern Europe, Russia etc. Excellent quality and perfect service gain the consistent praise from customers.
Certifications
After Sales Service
1.Pre-sale service:
Act as a good adviser and assistant of clients enable them to get rich and generous returns on their investments .
1.Select equipment model.
2.Design and manufacture products according to client’s special requirement
3.Train technical personnel for clients .
2.Services during the sale:
1.Pre-check and accept products ahead of delivery .
2. Help clients to draft solving plans .
3.After-sale services:
Provide considerate services to minimize clients’ worries.
1.Complete Aftersales service,professional engineers available to service machinery at home or oversea.
2. 24 hours technical support by e-mail.
3. Call or Video service.
FAQ
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.
Q4: What about the voltage of products??Can they be customized?
A4: Yes, of course. The voltage can be customized according to your equirement.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 20-30 days.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
Q7 Which trade term can you accept?
A7: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Structure Type: | Open Type |
| Exhaust Pressure(MPa): | 0.8 |
.webp)
What Industries Commonly Use Water-Lubricated Air Compressors?
Water-lubricated air compressors find applications in various industries where specific operating conditions or regulatory requirements make them a preferred choice. Here are some industries that commonly utilize water-lubricated air compressors:
- Food and Beverage: Water-lubricated compressors are often used in the food and beverage industry due to their ability to provide clean, oil-free compressed air. Compressed air is widely used in food processing and packaging applications, such as pneumatic conveying, product mixing, bottle blowing, and food packaging. Water-lubricated compressors help maintain product purity, prevent oil contamination, and comply with stringent food safety standards.
- Pharmaceutical and Healthcare: The pharmaceutical and healthcare industries have strict requirements for compressed air quality, especially in applications where compressed air comes into direct contact with pharmaceutical products or is used in critical medical equipment. Water-lubricated compressors offer a viable solution by providing lubrication without the risk of oil contamination. They are commonly used for processes such as air agitation, medical device manufacturing, and laboratory applications.
- Electronics and Semiconductors: In electronics and semiconductor manufacturing, where sensitive components and cleanroom environments are involved, oil-free compressed air is essential. Water-lubricated compressors can provide the required level of air purity without introducing oil particles or vapors that could contaminate the electronics or semiconductor production processes. They are used in applications such as chip manufacturing, circuit board assembly, and cleanroom air supply.
- Textile and Garment: Water-lubricated compressors are utilized in the textile and garment industry, where the presence of oil can negatively impact the quality and appearance of fabrics or garments. Compressed air is widely used in textile machinery for tasks such as spinning, weaving, and air jet looms. Water-lubricated compressors ensure oil-free air supply, preventing oil stains or contamination that could affect the final textile or garment products.
- Environmental and Wastewater Treatment: Water-lubricated compressors are also employed in environmental and wastewater treatment applications. These compressors help supply air for aeration processes in wastewater treatment plants, where air is introduced into the treatment tanks to facilitate the growth of beneficial bacteria for biological treatment. Water-lubricated compressors provide oil-free compressed air, ensuring the purity and effectiveness of the treatment process.
While the industries mentioned above commonly use water-lubricated air compressors, it is important to note that these compressors may also find applications in other sectors where oil-free, contamination-free compressed air is required for specific processes or environmental considerations.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
Are Water Lubrication Air Compressors More Environmentally Friendly?
Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:
- Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
- Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
- Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
- Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
- Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.
Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.


editor by CX 2023-10-18