Product Description
| Model : | Oil Free Series |
| Type: | Dry Oil Free Screw Air Compressor |
| Voltage: | Dry Oil Free Screw Air Compressor |
| Working Pressure: | 8~12.5bar |
| Installed Motor Power: | 5.5~250 Kw |
| Capacity: | 0.2~44.78 m3/min |
| Driven Method: | Direct Driven |
| Power | 380V / 3PH / 50HZ / 60HZ 220V / 3PH / 50HZ / 60HZ 440V / 3PH / 50HZ / 60HZ 415V / 3PH / 50HZ / 60HZ Can be customized |
| Air End: | SKF/SKF |
| Transport Package: | Standard Wooden Packing |
| Electrical control system | Schneider |
| Motor protection grade | IP54 |
| Insulation class | F |
| Outlet Air Humidity | ambient temperature+10ºC |
Product Features
In pharmaceutical, electronic, chemical, microbial fermentation, blow moulding, pressure detection and other industrial production, there are many medium-pressure compressed air to be used to 1.6-4.0 MPa in power plants, naval ships, military and national defense facilities. At present, piston air compressors are mostly used at home and abroad, while piston air compressors are characterized by large vibration, high noise, large leakage and short service life, so their efficiency is very low and the same work is done. The medium pressure oil-free screw machine has compact structure, high working efficiency, low noise, low vibration, easy maintenance, low operating cost and good air quality. At the same time, the series of machines are controlled by micro-computer system. The whole machine has multiple protective performance of pressure, temperature and overload energy.
1.Constant pressure control: high-precision constant pressure control with a pressure fluctuation range within0.01MPa.
2. Variable frequency soft start: remove CHINAMFG current during starting, avoid the power grid impact, prevent the current impact through gradual speed regulation and improve flexibility;
3.No idling: prevent idling of the compressor during running and reduce invalid energy consumption;
3.High performance vector control: low-frequency starting provides a large torque and a low running current, ensuring to get a reasonable torque to drive the air compressor to run stably with the minimum temperature rise of the motor within a wide speed range;
| Model | Working Pressure | Capacity | Motor Power | Noise dB(A) |
Inlet and outlet pipe diameter of cooling water |
Cooling water volume |
Dimension(mm) | Net Weight | Air Outlet Pipe Diameter | ||||
| Psi | bar | Cfm | m3/min | kw/hp | Water temp.32ºC |
L | W | H | KGS | ||||
| T/H | |||||||||||||
| SGM08 | 116 | 8 | 40.65 | 1.15 | 7.5/10 | 58 | 3/4″ | 2 | 1550 | 775 | 1445 | 630 | 3/4″ |
| 145 | 10 | 36.01 | 1.02 | ||||||||||
| SGM11 | 116 | 8 | 54.73 | 1.55 | 11/15 | 58 | 3/4″ | 2.5 | 1080 | 750 | 1571 | 280 | 3/4″ |
| 145 | 10 | 46.61 | 1.32 | ||||||||||
| 174 | 12 | 36.02 | 1.02 | ||||||||||
| SGM15 | 116 | 8 | 84.74 | 2.40 | 15/20 | 63 | 1″ | 3.5 | 1080 | 750 | 1571 | 300 | 1″ |
| 145 | 10 | 74.86 | 2.12 | ||||||||||
| 174 | 12 | 56.85 | 1.61 | ||||||||||
| SGM18 | 116 | 8 | 109.46 | 3.10 | 18.5/25 | 65 | 1″ | 4 | 1380 | 850 | 1185 | 430 | 1″ |
| 145 | 10 | 92.51 | 2.62 | ||||||||||
| 174 | 12 | 75.21 | 2.13 | ||||||||||
| SGM22 | 116 | 8 | 123.59 | 3.50 | 22/30 | 65 | 1″ | 5 | 1380 | 850 | 1185 | 450 | 1″ |
| 145 | 10 | 110.52 | 3.13 | ||||||||||
| 174 | 12 | 92.16 | 2.61 | ||||||||||
| SGM30 | 116 | 8 | 176.55 | 5.00 | 30/40 | 66 | 1 1/4″ | 7 | 1380 | 850 | 1185 | 500 | 1 1/2″ |
| 145 | 10 | 148.30 | 4.20 | ||||||||||
| 174 | 12 | 112.29 | 3.18 | ||||||||||
| SGM37 | 116 | 8 | 215.39 | 6.10 | 37/50 | 67 | 1 1/4″ | 9 | 1500 | 1000 | 1345 | 650 | 1 1/2″ |
| 145 | 10 | 184.32 | 5.22 | ||||||||||
| 174 | 12 | 169.84 | 4.81 | ||||||||||
| SGM45 | 116 | 8 | 257.76 | 7.30 | 45/60 | 68 | 1 1/2″ | 10 | 1500 | 1000 | 1345 | 680 | 2″ |
| 145 | 10 | 216.45 | 6.13 | ||||||||||
| 174 | 12 | 199.50 | 5.65 | ||||||||||
| SGM55 | 116 | 8 | 338.98 | 9.60 | 55/75 | 70 | 1 1/2″ | 12 | 1800 | 1250 | 1670 | 1150 | 2″ |
| 145 | 10 | 303.67 | 8.60 | ||||||||||
| 174 | 12 | 262.00 | 7.42 | ||||||||||
| SGM75 | 116 | 8 | 441.38 | 12.50 | 75/100 | 73 | 1 1/2″ | 18 | 1800 | 1250 | 1670 | 1200 | 2″ |
| 145 | 10 | 403.24 | 11.42 | ||||||||||
| 174 | 12 | 347.10 | 9.83 | ||||||||||
| SGM90 | 116 | 8 | 575.55 | 16.30 | 90/120 | 73 | 2″ | 20 | 1800 | 1250 | 1670 | 1350 | 2 1/2” |
| 145 | 10 | 512.70 | 14.52 | ||||||||||
| 174 | 12 | 434.31 | 12.30 | ||||||||||
| SGM110 | 116 | 8 | 685.01 | 19.40 | 110/150 | 78 | 2″ | 24 | 2300 | 1470 | 1840 | 1800 | 2 1/2” |
| 145 | 10 | 596.74 | 16.90 | ||||||||||
| 174 | 12 | 533.18 | 15.10 | ||||||||||
| SGM132 | 116 | 8 | 784.24 | 22.21 | 132/175 | 78 | 2″ | 30 | 2300 | 1470 | 1840 | 1850 | 2 1/2” |
| 145 | 10 | 719.62 | 20.38 | ||||||||||
| 174 | 12 | 645.82 | 18.29 | ||||||||||
| SGM160 | 116 | 8 | 1018.69 | 28.85 | 160/200 | 78 | 2 1/2″ | 35 | 2300 | 1470 | 1840 | 2000 | 3″ |
| 145 | 10 | 865.80 | 24.52 | ||||||||||
| 174 | 12 | 782.82 | 22.17 | ||||||||||
| SGM200 | 116 | 8 | 1293.41 | 36.63 | 200/270 | 78 | 3″ | 43 | 3150 | 1980 | 2152 | 3500 | 4″ |
| 145 | 10 | 1154.64 | 32.70 | ||||||||||
| 174 | 12 | 978.79 | 27.72 | ||||||||||
| SGM250 | 116 | 8 | 1514.09 | 42.88 | 250/350 | 78 | 3″ | 53 | 3150 | 1980 | 2152 | 3800 | 4 |
| 145 | 10 | 1377.09 | 39.00 | ||||||||||
| 174 | 12 | 1223.14 | 34.64 | ||||||||||
| SGM320 | 116 | 8 | 2086.82 | 59.10 | 320/430 | 80 | 4″ | 60 | 3150 | 1980 | 2152 | 4000 | 5″ |
| 145 | 10 | 1889.09 | 53.50 | ||||||||||
| 174 | 12 | 1703.71 | 48.25 | ||||||||||
| Motor Protection Class: IP23/IP54/IP55 or as per your required | |||||||||||||
| Voltage: 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests. | |||||||||||||
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
If you are interested in any of our products,please feel free to contact us.
We are looking CHINAMFG to cooperating,growing and developing with your sincerely.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
.webp)
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
.webp)
Are There Any Downsides to Using Water-Lubricated Air Compressors?
While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:
- Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
- Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
- Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
- Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
- Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.
Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.


editor by CX 2024-01-02